The boom in single-cell technologies has brought a surge of high dimensional data that come from different sources and represent cellular systems from different views. With advances in these single-cell technologies, integrating single-cell data across modalities arises as a new computational challenge. Here, we present an adversarial approach, sciCAN, to integrate single-cell chromatin accessibility and gene expression data in an unsupervised manner. We benchmarked sciCAN with 5 existing methods in 5 scATAC-seq/scRNA-seq datasets, and we demonstrated that our method dealt with data integration with consistent performance across datasets and better balance of mutual transferring between modalities than the other 5 existing methods. We further applied sciCAN to 10X Multiome data and confirmed that the integrated representation preserves biological relationships within the hematopoietic hierarchy. Finally, we investigated CRISPR-perturbed single-cell K562 ATAC-seq and RNA-seq data to identify cells with related responses to different perturbations in these different modalities.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9464763 | PMC |
http://dx.doi.org/10.1038/s41540-022-00245-6 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!