Purpose: As we are exposed to stress on a daily basis, it is important to detect and treat stress during the subclinical period. However, methods to quantify and confirm stress are currently unavailable, and the detection of subclinical stressors is difficult. This study aimed to determine whether manganese-enhanced magnetic resonance imaging (MEMRI) could be used to assess stress in rat brains.

Methods: We exposed male Wistar/ST rats bred in a specific pathogen-free environment to ultrasound stimuli (22 kHz and 55 kHz) for 10 days and then assessed brain activities using MEMRI, the light/dark box test, and ΔFosB immunohistochemical staining.

Results: In the MEMRI assessments, exposure at 22 kHz activated the periaqueductal gray, while exposure at 55 kHz specifically enhanced activity in the nucleus accumbens core and the orbitofrontal cortex. The exploratory behavior of the 55-kHz group increased sharply, while that of the 22-kHz group showed a lower exploratory value. ΔFosB expression increased in the orbitofrontal cortex, nucleus accumbens, periaqueductal gray, and amygdaloid nucleus in the 22-kHz group.

Conclusion: Ultrasound stimuli at 22 kHz suppressed weight gain in rats and excessive ΔFosB induction in the nucleus accumbens caused excessive sensitization of the neural circuit, thereby contributing to pathological behavior. We thus demonstrated that MEMRI can be useful to objectively assess the pathophysiology of stress-related disorders.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mri.2022.08.016DOI Listing

Publication Analysis

Top Keywords

nucleus accumbens
12
manganese-enhanced magnetic
8
magnetic resonance
8
resonance imaging
8
ultrasound stimuli
8
stimuli 22 khz
8
periaqueductal gray
8
orbitofrontal cortex
8
imaging detects
4
detects activation
4

Similar Publications

Background: Food addiction and an impulsive personality can increase overeating, which can lead to weight gain. The amygdala and nucleus accumbens (NAcc) are critical for regulating obesogenic behaviour. However, whether the amygdala or the NAcc acts as the neural basis for the regulation of food addiction, impulsive personality, and body weight remains unclear.

View Article and Find Full Text PDF

Aim: The Transorbital and supraorbital minimally invasive approaches have been defined to reach intraorbital structures, adjacent sinuses, skull base, and other intracranial targets in this region. These approaches reduce the possible cosmetic and brain retraction-related morbidities caused by traditional transcranial approaches. Although these pathways are being studied endoscopically, a stereotactic approach has not been defined.

View Article and Find Full Text PDF

Introduction: Access to electric light has exposed living organisms to varying intensities of light throughout the 24 h day. Dim light at night (DLAN) is an inappropriate signal for the biological clock, which is responsible for the circadian organization of physiology. During the gestational period, physiological adaptations occur to ensure a successful pregnancy and optimal fetal development.

View Article and Find Full Text PDF

A single exposure to a stressful event can result in enduring changes in behaviour. Long-term modifications in neuronal networks induced by stress are well explored but the initial steps leading to these alterations remain incompletely understood. In this study, we found that acute stress exposure triggers an immediate increase in the firing activity of calretinin-positive neurons in the paraventricular thalamic nucleus (PVT/CR+) that persists for several days in mice.

View Article and Find Full Text PDF

Background: Endometriosis, a prevalent chronic gynecological condition, is frequently associated with infertility and pelvic pain. Despite numerous studies indicating a correlation between epigenetic regulation and endometriosis, its precise genetic etiology remains elusive. Methyltransferase-like 14 (METTL14), a crucial component of the N6-methyladenosine (mA) RNA methyltransferase complex and an RNA binding scaffold, is known to play a pivotal role in various human diseases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!