Planar cell polarity protein Celsr2 maintains structural and functional integrity of adult cortical synapses.

Prog Neurobiol

Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, PR China; Co-innovation Center of Neuroregeneration, Nantong University, Jiangsu, PR China; Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou 510515, PR China. Electronic address:

Published: December 2022

A few developmental genes remain persistently expressed in the adult stage, whilst their potential functions in the mature brain remain underappreciated. Here, we report the unexpected importance of Celsr2, a core Planar cell polarity (PCP) component, in maintaining the structural and functional integrity of adult neocortex. Celsr2 is highly expressed during development and remains expressed in adult neocortex. In vivo synaptic imaging in Celsr2 deficient mice revealed alterations in spinogenesis and reduced neuronal calcium activities, which are associated with impaired motor learning. These phenotypes were accompanied with anomalies of both postsynaptic organization and presynaptic vesicles. Knockout of Celsr2 in adult mice recapitulated those features, further supporting the role of Celsr2 in maintaining the integrity of mature cortex. In sum, our data identify previously unrecognized roles of Celsr2 in the maintenance of synaptic function and motor learning in adulthood.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pneurobio.2022.102352DOI Listing

Publication Analysis

Top Keywords

planar cell
8
cell polarity
8
structural functional
8
functional integrity
8
integrity adult
8
expressed adult
8
adult neocortex
8
motor learning
8
celsr2
7
adult
5

Similar Publications

Presently, the in vitro recording of intracellular neuronal signals on microelectrode arrays (MEAs) requires complex 3D nanostructures or invasive and approaches such as electroporation. Here, it is shown that laser poration enables intracellular coupling on planar electrodes without damaging neurons or altering their spontaneous electrophysiological activity, allowing the process to be repeated multiple times on the same cells. This capability distinguishes laser-based neuron poration from more invasive methods like electroporation, which typically serve as endpoint measurement for cells.

View Article and Find Full Text PDF

Electrically Switchable Multi-Stable Topological States Enabled by Surface-Induced Frustration in Nematic Liquid Crystal Cells.

Adv Mater

January 2025

Liquid Crystals and Photonics Group, Department of Electronics and Information Systems, Ghent University, Technologiepark-Zwijnaarde 126, Ghent, 9052, Belgium.

In liquid crystal (LC) cells, the surface patterning directs the self-assembly of the uniaxial building blocks in the bulk, enabling the design of stimuli-response optical devices with various functionalities. The combination of different anchoring patterns at both substrates can lead to surface induced frustration, preventing a purely planar and defect-free configuration. In cells with crossed assembly of rotating anchoring patterns, elastic deformations allow to obtain a defect-free bulk configuration, but an electrical stimulus can induce disclination lines.

View Article and Find Full Text PDF

Patterning Planar, Flexible Li-S Battery Full Cells on Laser-Induced Graphene Traces.

Nanomaterials (Basel)

December 2024

Quantum Nano Centre, Department of Chemical Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada.

Laser conversion of commercial polymers to laser-induced graphene (LIG) using inexpensive and accessible CO lasers has enabled the rapid prototyping of promising electronic and electrochemical devices. Frequently used to pattern interdigitated supercapacitors, few approaches have been developed to pattern batteries-in particular, full cells. Herein, we report an LIG-based approach to a planar, interdigitated Li-S battery.

View Article and Find Full Text PDF

In neurons, the acquisition of a polarized morphology is achieved upon the outgrowth of a single axon from one of several neurites. Small extracellular vesicles (sEVs), such as exosomes, from diverse sources are known to promote neurite outgrowth and thus may have therapeutic potential. However, the effect of fibroblast-derived exosomes on axon elongation in neurons of the central nervous system under growth-permissive conditions remains unclear.

View Article and Find Full Text PDF

Significant progress has been made through the optimization of modelling and device architecture solar cells has proven to be a valuable and highly effective approach for gaining a deeper understanding of the underlying physical processes in solar cells. Consequently, this research has conducted a two-dimensional (2D) perovskite solar cells (PSCs) simulation to develop an accurate model. The approach utilized in this study is based on the finite element method (FEM).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!