Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Cancer has been the leading cause of death due mainly to tumor metastasis. The tumor microenvironment plays a key role in tumor metastasis. As the main stromal cells in tumor microenvironment originated from activated fibroblast, cancer-associated fibroblasts (CAFs) play a major role in promoting tumor metastasis. A promising therapeutic avenue is reprogramming of CAFs into tumor-restraining quiescence state. In this study, we observed that CAF-like active pancreatic stellate cells (PSCs) interact with each other via N-cadherin, a force-sensitive transmembrane receptor. Since N-cadherin ligation mediated mechanotransduction has been reported to restrict integrin mediated signalling, we thus hypothesized that the reprogramming of activated PSCs by mechanical modulation of N-cadherin ligation might be possible. To test this hypothesis, we grafted N-cadherin ligand (HAVDI peptide) onto soft polyethylene glycol hydrogel substrate prior to cell adhesion to mimic cell-cell interaction via N-cadherin ligation. We found that the activated PSCs could be reprogrammed to their original quiescent state when transferred onto the substrate with immobilized HAVDI peptide. These results reveal a key role of mechanosensing by intercellular transmembrane receptor in reprogramming of activated PSCs, and provide a potential way for designing novel therapeutic strategies for cancer treatment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jmb.2022.167819 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!