Insights into olation reaction-driven coagulation and adsorption: A pathway for exploiting the surface properties of biochar.

Sci Total Environ

College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China; School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China.

Published: January 2023

In this study, characterization of biochar for the efficient removal of cadmium was investigated. Biochar has a specific distribution of functional groups on its surface and has a natural electronegativity. Using carbonate as an olation reagent, the biochar coagulates with the olation reaction products. The maximum removal capacity reached 430.4 mg/g at pH = 4 (Langmuir Fit). Carbonate hydrolyzed on the surface of biochar, Cd in solution undergoes olation with OH and forms specially structured nanochains that are positively charged on the surface. The biochar with electronegativity on the surface coagulates with the cadmium hydroxide nanochains, and the cadmium-containing colloid formed by electrostatic attraction settles rapidly and removed. The biochar's re-flocculation performance was consistent, and the loadings could be changed to effectively remove cadmium while keeping the pH neutral at equilibrium.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2022.158595DOI Listing

Publication Analysis

Top Keywords

surface biochar
8
biochar
6
surface
5
insights olation
4
olation reaction-driven
4
reaction-driven coagulation
4
coagulation adsorption
4
adsorption pathway
4
pathway exploiting
4
exploiting surface
4

Similar Publications

Nano-biochar considers a versatile and valuable sorbent to enhance plant productivity by improving soil environment and emerged as a novel solution for environmental remediation and sustainable agriculture in modern era. In this study, roles of foliar applied nanobiochar colloidal solution (NBS) on salt stressed tomato plants were investigated. For this purpose, NBS was applied (0%, 1% 3% and 5%) on two groups of plants (control 0 mM and salt stress 60 mM).

View Article and Find Full Text PDF

Immobilization of Peniophora incarnata F1 in PVA-SA-biochar matrix and its degradation performance and mechanism for erythromycin degradation.

J Environ Manage

January 2025

Changzhou Key Laboratory of Biomass Green, Safe and High Value Utilization Technology, Institute of Urban and Rural Mining, Changzhou University, No.21 Gehu Road, Wujin District, Changzhou, 213164, China; National-Local Joint Engineering Research Center for Biomass Refining and High-Quality Utilization, Changzhou University, No.21 Gehu Road, Wujin District, Changzhou, 213164, China. Electronic address:

Erythromycin is becoming one of the most common contaminants detected in surface water and wastewater, which poses a potential risk to ecological systems and human health. Until now, there is still no effective way to eliminate it. Herein, a novel and efficient erythromycin-degrading fungus Peniophora incarnata F1, capable of utilizing erythromycin as its sole source of carbon and energy, was isolated from contaminated sludge.

View Article and Find Full Text PDF

Application of Biochar-Immobilized for Enhancing Phosphorus Uptake and Growth in Rice.

Plants (Basel)

January 2025

State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China.

Phosphorus (P) is an essential nutrient for rice growth, and the presence of phosphate-solubilizing bacteria (PSB) is an effective means to increase soil P content. However, the direct application of PSB may have minimal significance due to their low survival in soil. Biochar serves as a carrier that enhances microbial survival, and its porous structure and surface characteristics ensure the adsorption of .

View Article and Find Full Text PDF

This research examines the possibility of palm oil and oil palm trunk biochar (OPTB) from pyrolysis effectively serving as alternative processing oils and fillers, substituting petroleum-based counterparts in natural rubber (NR) composites. Chemical, elemental, surface and morphological analyses were used to characterize both carbon black (CB) and OPTB, by using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) gas porosimetry, and scanning electron microscopy (SEM). The influences of OPTB contents from 0 to 100 parts per hundred rubber (phr) on thermal, dielectric, dynamic mechanical, and cure characteristics, and the key mechanical properties of particulate NR-composites were investigated.

View Article and Find Full Text PDF

To address cadmium pollution in China's cultivated land, chitosan, inorganic and organic selenium were used to modify rice husk charcoal for cadmium inhibition. Basic physicochemical properties of rice husk carbons were characterized (BET, FTIR, XRD, Zeta potential). Kinetic and isothermal adsorption experiments studied the adsorption of Cd by modified biochar under different pH and dosages.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!