A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Salinity reduces site quality and mangrove forest functions. From monitoring to understanding. | LitMetric

Salinity reduces site quality and mangrove forest functions. From monitoring to understanding.

Sci Total Environ

Chair of Forest Growth and Yield Science, Department of Life Science Systems, School of Life Sciences, Technical University of Munich, Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany.

Published: December 2022

Mangroves continue to be threatened across their range by a mix of anthropogenic and climate change-related stress. Climate change-induced salinity is likely to alter the structure and functions of highly productive mangrove systems. However, we still lack a comprehensive understanding of how rising salinity affects forest structure and functions because of the limited availability of mangrove field data. Therefore, based on extensive spatiotemporal mangrove data covering a large-scale salinity gradient, collected from the world's largest single tract mangrove ecosystem - the Bangladesh Sundarbans, we, aimed to examine (QI) how rising salinity influences forest structure (e.g., stand density, diversity, leaf area index (LAI), etc.), functions (e.g., carbon stocks, forest growth), nutrients availability, and functional traits (e.g., specific leaf area, wood density). We also wanted to know (QII) how forest functions interact (direct vs. indirect) with biotic (i.e., stand structure, species richness, etc.) and abiotic factors (salinity, nutrients, light availability, etc.). We also asked (QIII) whether the functional variable decreases disproportionately with salinity and applied the power-law (i.e., Y = a X) to the salinity and functional variable relationships. In this study, we found that rises in salinity significantly impede forest growth and produce less productive ecosystems dominated by dwarf species while reducing stand structural properties (i.e., tree height, basal area, dominant tree height, LAI), soil carbon (organic and root carbon), and macronutrient availability in the soil (e.g., NH4+, P, and K). Besides, species-specific leaf area (related to resource acquisition) also decreased with salinity, whereas wood density (related to resource conservation) increased. We observed a declining abundance of the salt-intolerant climax species (Heritiera fomes) and dominance of the salt-tolerant species (Excoecaria agallocha, Ceriops decandra) in the high saline areas. In the case of biotic and abiotic factors, salinity and salinity-driven gap fraction (high transmission of light) had a strong negative impact on functional variables, while nutrients and LAI had a positive impact. In addition, the power-law explained the consistent decline of functional variables with salinity. Our study disentangles the negative effects of salinity on site quality in the Sundarbans mangrove ecosystem, and we recognize that nutrient availability and LAI are likely to buffer the less salt-tolerant species to maintain the ability to sequester carbon with sea-level rise. These novel findings advance our understanding of how a single stressor-salinity-can shape mangrove structure, functions, and productivity and offer decision makers a much-needed scientific basis for developing pragmatic ecosystem management and conservation plans in highly stressed coastal ecosystems across the globe.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2022.158662DOI Listing

Publication Analysis

Top Keywords

salinity
13
structure functions
12
leaf area
12
site quality
8
forest functions
8
rising salinity
8
forest structure
8
mangrove ecosystem
8
forest growth
8
wood density
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!