Bacterial infection is a major complication associated with bioimplant materials, including titanium (Ti) based orthopedic joints and dental implants. Thus, the fabrication of Ti surfaces with antibacterial activity is highly important. Black phosphorus (BP) is a recently discovered promising two-dimensional semiconductor for various biomedical applications due to its tunable bandgap and physicochemical properties. The present study aimed to synthesize zinc oxide (ZnO) laden BP nanohybrids (NH) and their coatings on a Ti bioimplant surface for improving the antibacterial activities against pathogenic bacteria with and without near-infrared (NIR) light irradiation. Nanohybrids were produced with the slightly oxidized BP NF and electrostatically laden ZnO NP. The produced BP-ZnO NH was a NIR active nanomaterial (up to ∼1000 nm), demonstrating a photothermal effect against bacterial infection and showing improved activity by damaging the cell membrane towards S. aureus in comparison to E. coli. Ti surface coated with BP-ZnO NH embedded chitosan (CS) demonstrated better antibacterial activity than BP NF, especially with NIR light treatment. Additionally, the produced BP nanoflakes and BP-ZnO NH, and their coatings over the Ti surface were found to be toxic at a negligible level. Electrochemical studies revealed the high corrosion resistance of the Ti surface coated with the synthesized antibacterial agents without altering its characteristic passive behavior. Owing to the interactions between the charged groups between chitosan and cell surfaces, a slight increase in antibacterial activities was noticed. Chitosan-based coating matrix embedded with nanoagents has adhered well over the Ti surface due to its inherent film-forming and high adhesion properties.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.colsurfb.2022.112807 | DOI Listing |
Sci Rep
December 2024
Department of Medical Microbiology, Radboudumc, Nijmegen, The Netherlands.
The aetiology of Alzheimer's disease (AD) and Parkinson's disease (PD) are unknown and tend to manifest at a late stage in life; even though these neurodegenerative diseases are caused by different affected proteins, they are both characterized by neuroinflammation. Links between bacterial and viral infection and AD/PD has been suggested in several studies, however, few have attempted to establish a link between fungal infection and AD/PD. In this study we adopted a nanopore-based sequencing approach to characterise the presence or absence of fungal genera in both human brain tissue and cerebrospinal fluid (CSF).
View Article and Find Full Text PDFSci Rep
December 2024
Department of Medical Microbiology and Infection Prevention, Amsterdam UMC - Location AMC, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
Vaginal reconstruction is necessary for various congenital and acquired conditions, including vaginal aplasia, trauma, tumors, and gender incongruency. Current surgical and non-surgical treatments often result in significant complications. Decellularized vaginal matrices (DVMs) from human tissue offer a promising alternative, but require effective sterilization to ensure safety and functionality.
View Article and Find Full Text PDFSci Rep
December 2024
Consumer and Design Sciences, College of Human Science Auburn University, Auburn, Alabama, USA.
Bermuda grass (Cynodon dactylon) is a tropical grass found in all tropical and subtropical areas. It is widely found in Bangladesh and well known for its antimicrobial properties. Cotton gauze is a woven cloth which is used for wound dressing and wound cushioning.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Medical and Surgical Sciences, Institute of Cardiology, University of Bologna, Policlinico S.Orsola-Malpighi, via Massarenti 9, Bologna, 40138, Italy.
Cardiac implantable electronic devices infections (CIEDI) are associated with poor survival despite the improvement in transvenous lead extraction (TLE). Aetiology and systemic involvement are driving factors of clinical outcomes. The aim of this study was to explore their contribute on overall mortality.
View Article and Find Full Text PDFSci Rep
December 2024
School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand.
Effector proteins secreted via the type III secretion system (T3SS) of nitrogen-fixing rhizobia are key determinants of symbiotic compatibility in legumes. Previous report revealed that the T3SS of Bradyrhizobium sp. DOA9 plays negative effects on Arachis hypogaea symbiosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!