Dual-Emission ZAISe/ZnS quantum dots for Multi-level Bio-Imaging: Foam cells and atherosclerotic plaque imaging.

J Colloid Interface Sci

College of Pharmacy, Chongqing Medical University, Chongqing 400016, P. R. China; Chongqing Pharmacodynamic Evaluation Engineering Technology Research Center, Chongqing 400016, P. R. China; Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing 400016, P. R. China. Electronic address:

Published: January 2023

In vitro or in vivo fluorescence imaging based on quantum dots (QDs) has shown promise for the noninvasive diagnosis of atherosclerosis. However, simultaneous in vitro and in vivo imaging remains challenging due to the limitation of the current synthesis method of dual-emission QDs (dual-emitting hybrid QDs, and broad-spectrum emitting QDs). Herein, we fabricate a dual-emission (visible region and near-infrared region emission) QDs (ZAISe/ZnS) via the "bottom to up" method of a quaternary inorganic compound for the foam cells and atherosclerosis plaque imaging simultaneously without the intricate size modulation and the strict optical filter requirements. The oil-soluble ZAISe/ZnS is further encapsulated with bovine serum albumin (BSA) to realize phase transfer and ultimately possess the inflammation-targeting properties via biomimetic treatment with MMV (macrophage-derived micro-vesicle). The results first indicate that the as-constructed ZAISe/ZnS@BSA@MMV could accurately locate the foam cells and conduct long-term imaging of the atherosclerotic plaque, which provides a new strategy for the early and noninvasive diagnosis of atherosclerosis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2022.08.134DOI Listing

Publication Analysis

Top Keywords

foam cells
12
quantum dots
8
atherosclerotic plaque
8
plaque imaging
8
vitro vivo
8
noninvasive diagnosis
8
diagnosis atherosclerosis
8
imaging
5
qds
5
dual-emission zaise/zns
4

Similar Publications

Tianxiangdan suppresses foam cell formation by enhancing lipophagy and reduces the progression of atherosclerosis.

In Vitro Cell Dev Biol Anim

January 2025

College of Traditional Chinese Medicine, Xinjiang Uygur Autonomous Region, Xinjiang Medical University, Urumqi, 830063, China.

The aim of this study is to assess the impact of Tianxiangdan (TXD) on lipophagy in foam cells and its underlying mechanism in treating atherosclerosis, particularly focusing on its efficacy in lowering blood lipids. In vivo, ApoE-/- atherosclerosis mouse models were established for group intervention. Blood lipid levels of the mice were measured, lipid deposition and autophagy levels in atherosclerotic plaques were assessed, and co-localization of lipid droplets and autophagosomes was examined.

View Article and Find Full Text PDF

The aim of this study was to investigate the underlying mechanism of chrysophanol(Chr) in reducing inflammation and foam cell formation induced by oxidized low-density lipoprotein(ox-LDL) and to investigate the targets and pathways related to effects of Chr on coronary atherosclerosis, providing a theoretical basis for the development of new clinical drugs. RAW264.7 macrophages were cultured in vitro, and after determining the appropriate concentrations of Chr and ox-LDL for treating RAW264.

View Article and Find Full Text PDF

Conventionally, the size, shape, and biomechanics of cartilages are determined by their voluminous extracellular matrix. By contrast, we found that multiple murine cartilages consist of lipid-filled cells called lipochondrocytes. Despite resembling adipocytes, lipochondrocytes were molecularly distinct and produced lipids exclusively through de novo lipogenesis.

View Article and Find Full Text PDF

Background: Vascular endothelial cell-derived exosomes are thought to mediate disease progression by regulating macrophage polarization. However, its mechanism in diabetes mellitus (DM)-related atherosclerosis (AS) progress is unclear.

Methods: High-glucose (HG) and oxLDL were used to induce human cardiac microvascular endothelial cells (HCMECs) to mimic DM-related AS model.

View Article and Find Full Text PDF

Background: Severe disruption of lipid metabolism in vivo is one of the central mechanisms in the development of atherosclerotic vascular injury (AVI). Reverse cholesterol transport (RCT) plays a pivotal role in eliminating excess cholesterol, preventing lipid deposition in the aorta, and reducing plaque formation associated with AVI. Floralozone (FL) reduces endothelial cell injury in AVI rats by regulating sphingosine-1-phosphate (S1P) expression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!