AI Article Synopsis

  • * The tool 'SURFACER' analyzes transcriptomic data to determine the activity of cell surface proteins in breast cancer, helping to identify proteins that significantly affect cellular functions.
  • * SURFACER can uncover important insights from various cancer datasets, allowing for the classification of cancers based on surface protein activity, which may lead to new targeted therapies and diagnostic methods.

Article Abstract

Cell surface proteins have been used as diagnostic and prognostic markers in cancer research and as targets for the development of anticancer agents. Many of these proteins lie at the top of signaling cascades regulating cell responses and gene expression, therefore acting as 'signaling hubs'. It has been previously demonstrated that the integrated network analysis on transcriptomic data is able to infer cell surface protein activity in breast cancer. Such an approach has been implemented in a publicly available method called 'SURFACER'. SURFACER implements a network-based analysis of transcriptomic data focusing on the overall activity of curated surface proteins, with the final aim to identify those proteins driving major phenotypic changes at a network level, named surface signaling hubs. Here, we show the ability of SURFACER to discover relevant knowledge within and across cancer datasets. We also show how different cancers can be stratified in surface-activity-specific groups. Our strategy may identify cancer-wide markers to design targeted therapies and biomarker-based diagnostic approaches.

Download full-text PDF

Source
http://dx.doi.org/10.1093/bib/bbac400DOI Listing

Publication Analysis

Top Keywords

surface protein
8
cell surface
8
surface proteins
8
analysis transcriptomic
8
transcriptomic data
8
surface
5
detection pan-cancer
4
pan-cancer surface
4
protein biomarkers
4
biomarkers network-based
4

Similar Publications

High-Performance TiCT-MXene/Mycelium Hybrid Membrane for Efficient Lead Remediation: Design and Mechanistic Insights.

ACS Appl Mater Interfaces

January 2025

Department of Materials Design and Innovation, University at Buffalo, Buffalo, New York 14260-1660, United States.

This study presents a hybrid microfiltration technology designed for high-performance lead (Pb(II)) remediation, especially from aqueous solutions with high Pb(II) concentrations, by utilizing two-dimensional (2D) TiCT-MXene layers deposited on dry mycelium membranes. The hybrid TiCT-MXene/mycelium (MyMX) membranes were fabricated via a single-step electrochemical deposition (ECD) technique, which enabled a uniform coating of 2D TiCT-MXene onto individual hyphal fibers of a prefabricated mycelium membrane. Optimized ECD parameters for high Pb(II) uptake were identified using scanning electron microscopy and energy-dispersive X-ray spectroscopy.

View Article and Find Full Text PDF

Gain-of-function variants in the voltage-gated sodium channel Nav1.7, encoded by the SCN9A gene, have previously been identified in patients with erythromelalgia, a clinical diagnosis defined by intermittent attacks of painful, hot, swollen, and red skin, predominantly involving the hands and feet. Symptoms are induced or aggravated by warming and relieved by cooling.

View Article and Find Full Text PDF

Squamate reptiles may have compensated for the lack of γδTCR with a duplication of the TRB locus.

Front Immunol

January 2025

Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM, United States.

Squamate reptiles are amongst the most successful terrestrial vertebrate lineages, with over 10,000 species across a broad range of ecosystems. Despite their success, squamates are also amongst the least studied lineages immunologically. Recently, a universal lack of γδ T cells in squamates due to deletions of the genes encoding the T cell receptor (TCR) γ and δ chains was discovered.

View Article and Find Full Text PDF

Chimeric Antigen Receptor (CAR)-T cell therapy has rapidly emerged as a groundbreaking approach in cancer treatment, particularly for hematologic malignancies. However, the application of CAR-T cell therapy in solid tumors remains challenging. This review summarized the development of CAR-T technologies, emphasized the challenges and solutions in CAR-T cell therapy for solid tumors.

View Article and Find Full Text PDF

ZBP1 senses DNA triggering type I interferon signaling pathway and unfolded protein response activation.

Front Immunol

January 2025

Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.

The innate immune system promptly detects and responds to invading pathogens, with a key role played by the recognition of bacterial-derived DNA through pattern recognition receptors. The Z-DNA binding protein 1 (ZBP1) functions as a DNA sensor inducing type I interferon (IFN) production, innate immune responses and also inflammatory cell death. ZBP1 interacts with cytosolic DNA via its DNA-binding domains, crucial for its activation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!