The objective of this manuscript was to validate a physiologically-based pharmacokinetic (PBPK) model developed to characterize brain pharmacokinetics (PK) of monoclonal antibodies (mAbs) using novel large-pore microdialysis data generated in mice. To support this objective, brain, CSF, and ISF PK of a human anti-tetanus toxin (TeTx) antibody was measured in mice following intraperitoneal (IP) administration. This antibody has no binding in mice. In addition, our recently published mouse brain PK data generated following intravenous (IV) and IP administration of trastuzumab in mice, and other published PK data for brain disposition of antibody in mice, were used to evaluate the PBPK model. All the model parameters were obtained from literature or kept the same as in our previously published manuscript. The revised PBPK model was able to characterize the PK of antibodies in mice brain, CSF, and ISF reasonably well (i.e., within a three-fold error). However, a priori selected parameters led to underprediction of ISF PK during the initial phase of the profile. A local sensitivity analysis suggested that minor changes in several brain-related parameters can help overcome this discrepancy, where an increase in the convective flow of antibodies across BBB was found to be the most parsimonious way to capture all the PK profiles well. However, the presence of this pathway needs further validation. As such, here we have presented an improved PBPK model to characterize and predict the PK of mAbs in different regions of the mouse brain following systemic administration. This model can serve as a quantitative tool to facilitate the discovery, preclinical evaluation, and preclinical-to-clinical translation of novel antibodies targeted against CNS disorders.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10928-022-09823-x | DOI Listing |
J Pharmacokinet Pharmacodyn
January 2025
Department of Clinical Pharmacy and Pharmacy Administration, West China school of Pharmacy, Sichuan University, Chengdu, 610064, China.
Alogliptin is a highly selective inhibitor of dipeptidyl peptidase-4 and primarily excreted as unchanged drug in the urine, and differences in clinical outcomes in renal impairment patients increase the risk of serious adverse reactions. In this study, we developed a comprehensive physiologically-based quantitative systematic pharmacology model of the alogliptin-glucose control system to predict plasma exposure and use glucose as a clinical endpoint to prospectively understand its therapeutic outcomes with varying renal function. Our model incorporates a PBPK model for alogliptin, DPP-4 activity described by receptor occupancy theory, and the crosstalk and feedback loops for GLP-1-GIP-glucagon, insulin, and glucose.
View Article and Find Full Text PDFAAPS PharmSciTech
January 2025
Department of Pharmaceutics, Faculty of Pharmacy, Hamdard University, Karachi, Pakistan.
The pharmacokinetics of renally eliminated antibiotics can be influenced by changes associated with renal function and development in a growing subject. Little is known about the effects of renal insufficiency on the pharmacokinetics of meropenem in pediatric subjects. The aim of this study was to develop a physiologically based pharmacokinetic (PBPK) model of meropenem for pediatric patients that can be used to optimize meropenem dosing in pediatric patients with renal impairment (RI).
View Article and Find Full Text PDFClin Pharmacol Ther
January 2025
Certara Predictive Technologies Division, Certara UK Limited, Sheffield, UK.
Understanding cytokine-related therapeutic protein-drug interactions (TP-DI) is crucial for effective medication management in conditions characterized by elevated inflammatory responses. Recent FDA and ICH guidelines highlight a systematic, risk-based approach for evaluating these interactions, emphasizing the need for a thorough mechanistic understanding of TP-DIs. This study integrates the physiologically based pharmacokinetic (PBPK) model for TP (specifically interleukin-6, IL-6) with small-molecule drug PBPK models to elucidate cytokine-related TP-DI mechanistically.
View Article and Find Full Text PDFJ Clin Pharmacol
January 2025
Bayer HealthCare SAS, Lille, France, on behalf of:, Model-Informed Drug Development, Research and Development, Pharmaceuticals, Bayer AG, Leverkusen, Germany.
Famotidine, a H-receptor antagonist, is commonly used to treat heartburn and gastroesophageal reflux disease during pregnancy. However, information on the pharmacokinetics (PK) of famotidine in pregnant patients is limited since pregnant patients are usually excluded from clinical trials. This study aimed to develop and evaluate a physiologically based pharmacokinetic (PBPK) model for famotidine in non-pregnant and pregnant populations, and to combine it with a pharmacodynamic (PD) model to predict the effect of famotidine on intragastric pH.
View Article and Find Full Text PDFEur J Pharm Sci
January 2025
Department of Pharmacy, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Department of Pharmacy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China. Electronic address:
Tacrolimus is extensively used for the prevention of graft rejection following solid organ transplantation in pregnant women. However, knowledge gaps in the dosage of tacrolimus for pregnant patients with different CYP3A5 genotypes and infection conditions have been identified. This study aimed to develop a pregnant physiologically based pharmacokinetic (PBPK) model to characterize the maternal and fetal pharmacokinetics of tacrolimus during pregnancy and explore and provide dosage adjustments.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!