Background: Development of new methods for analysis of protein-protein interactions (PPIs) at molecular and nanometer scales gives insights into intracellular signaling pathways and will improve understanding of protein functions, as well as other nanoscale structures of biological and abiological origins. Recent advances in computational tools, particularly the ones involving modern deep learning algorithms, have been shown to complement experimental approaches for describing and rationalizing PPIs. However, most of the existing works on PPI predictions use protein-sequence information, and thus have difficulties in accounting for the three-dimensional organization of the protein chains.
Results: In this study, we address this problem and describe a PPI analysis based on a graph attention network, named Struct2Graph, for identifying PPIs directly from the structural data of folded protein globules. Our method is capable of predicting the PPI with an accuracy of 98.89% on the balanced set consisting of an equal number of positive and negative pairs. On the unbalanced set with the ratio of 1:10 between positive and negative pairs, Struct2Graph achieves a fivefold cross validation average accuracy of 99.42%. Moreover, Struct2Graph can potentially identify residues that likely contribute to the formation of the protein-protein complex. The identification of important residues is tested for two different interaction types: (a) Proteins with multiple ligands competing for the same binding area, (b) Dynamic protein-protein adhesion interaction. Struct2Graph identifies interacting residues with 30% sensitivity, 89% specificity, and 87% accuracy.
Conclusions: In this manuscript, we address the problem of prediction of PPIs using a first of its kind, 3D-structure-based graph attention network (code available at https://github.com/baranwa2/Struct2Graph ). Furthermore, the novel mutual attention mechanism provides insights into likely interaction sites through its unsupervised knowledge selection process. This study demonstrates that a relatively low-dimensional feature embedding learned from graph structures of individual proteins outperforms other modern machine learning classifiers based on global protein features. In addition, through the analysis of single amino acid variations, the attention mechanism shows preference for disease-causing residue variations over benign polymorphisms, demonstrating that it is not limited to interface residues.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9464414 | PMC |
http://dx.doi.org/10.1186/s12859-022-04910-9 | DOI Listing |
Sci Rep
December 2024
Department of Computing and Information Systems, Sunway University, 47500, Petaling Jaya, Selangor Darul Ehsan, Malaysia.
Urban mobility prediction is crucial for optimizing resource allocation, managing transportation systems, and planning urban development. We propose a novel framework, GeoTemporal LSTM (GT-LSTM), designed to address the intricate spatiotemporal dynamics of urban environments. GT-LSTM integrates temporal dependencies with geographic information through a multi-modal approach that combines attention mechanisms and Recurrent Neural Networks (RNNs).
View Article and Find Full Text PDFBrief Bioinform
November 2024
School of Information Science and Technology, Northeast Normal University, 130117 Changchun, China.
The diffusion generative model has achieved remarkable performance across various research fields. In this study, we propose a transferable graph attention diffusion model, GADIFF, for a molecular conformation generation task. With adopting multiple equivariant networks in the Markov chain, GADIFF adds GIN (Graph Isomorphism Network) to acquire local information of subgraphs with different edge types (atomic bonds, bond angle interactions, torsion angle interactions, long-range interactions) and applies MSA (Multi-head Self-attention) as noise attention mechanism to capture global molecular information, which improves the representative of features.
View Article and Find Full Text PDFNetw Neurosci
December 2024
Department of Clinical Cognition Science, Clinic of Neurology at the RWTH Aachen University Faculty of Medicine, ZBMT, Aachen, Germany.
Networks in the parietal and premotor cortices enable essential human abilities regarding motor processing, including attention and tool use. Even though our knowledge on its topography has steadily increased, a detailed picture of hemisphere-specific integrating pathways is still lacking. With the help of multishell diffusion magnetic resonance imaging, probabilistic tractography, and the Graph Theory Analysis, we investigated connectivity patterns between frontal premotor and posterior parietal brain areas in healthy individuals.
View Article and Find Full Text PDFFront Microbiol
December 2024
College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China.
In the contemporary field of life sciences, researchers have gradually recognized the critical role of microbes in maintaining human health. However, traditional biological experimental methods for validating the association between microbes and diseases are both time-consuming and costly. Therefore, developing effective computational methods to predict potential associations between microbes and diseases is an important and urgent task.
View Article and Find Full Text PDFNeural Netw
December 2024
College of Computer Science, Zhejiang University, Hangzhou, 310027, China; Zhejiang Key Laboratory of Accessible Perception and Intelligent Systems, Zhejiang University, Hangzhou, 310027, China. Electronic address:
Graph Neural Networks (GNNs) have achieved remarkable success in various graph mining tasks by aggregating information from neighborhoods for representation learning. The success relies on the homophily assumption that nearby nodes exhibit similar behaviors, while it may be violated in many real-world graphs. Recently, heterophilous graph neural networks (HeterGNNs) have attracted increasing attention by modifying the neural message passing schema for heterophilous neighborhoods.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!