Role of stiffness and physico-chemical properties of tumour microenvironment on breast cancer cell stemness.

Acta Biomater

Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, M13 9PL, Manchester, United Kingdom; BIOtech - Center for Biomedical Technologies, Department of Industrial Engineering, University of Trento, Via delle Regole 101, Trento 38123, Italy. Electronic address:

Published: October 2022

Several physico-chemical properties of the tumour microenvironment (TME) are dysregulated during tumour progression, such as tissue stiffness, extracellular pH and interstitial fluid flow. Traditional preclinical models, although useful to study biological processes, do not provide sufficient control over these physico-chemical properties, hence limiting the understanding of cause-effect relationships between the TME and cancer cells. Breast cancer stem cells (B-CSCs), a dynamic population within the tumour, are known to affect tumour progression, metastasis and therapeutic resistance. With their emerging importance in disease physiology, it is essential to study the interplay between above-mentioned TME physico-chemical variables and B-CSC marker expression. In this work, 3D in vitro models with controlled physico-chemical properties (hydrogel stiffness and composition, perfusion, pH) were used to mimic normal and tumour breast tissue to study changes in proliferation, morphology and B-CSC population in two separate breast cancer cell lines (MCF-7 and MDA-MB 231). Cells encapsulated in alginate-gelatin hydrogels varying in stiffness (2-10 kPa), density and adhesion ligand (gelatin) were perfused (500 µL/min) for up to 14 days. Physiological (pH 7.4) and tumorigenic (pH 6.5) media were used to mimic changes in extracellular pH within the TME. We found that both cell lines have distinct responses to changes in physico-chemical factors in terms of proliferation, cell aggregates size and morphology. Most importantly, stiff and dense hydrogels (10 kPa) and acidic pH (6.5) play a key role in B-CSCs dynamics, increasing both epithelial (E-CSCs) and mesenchymal cancer stem cell (M-CSCs) marker expression, supporting direct impact of the physico-chemical microenvironment on disease onset and progression. STATEMENT OF SIGNIFICANCE: Currently no studies evaluate the impact of physico-chemical properties of the tumour microenvironment on breast cancer stem cell (B-CSC) marker expression in a single in vitro model and at the same time. In this study, 3D in vitro models with varying stiffness, extracellular pH and fluid flow are used to recapitulate the breast tumour microenvironment to evaluate for the first time their direct effect on multiple breast cancer phenotypes: cell proliferation, cell aggregate size and shape, and B-CSC markers. Results suggest these models could open new ways of monitoring disease phenotypes, from the early-onset to progression, as well as being used as testing platforms for effective identification of specific phenotypes in the presence of relevant tumour physico-chemical microenvironment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.actbio.2022.08.074DOI Listing

Publication Analysis

Top Keywords

physico-chemical properties
20
breast cancer
20
tumour microenvironment
16
properties tumour
12
cancer stem
12
marker expression
12
physico-chemical
9
tumour
9
microenvironment breast
8
cell
8

Similar Publications

Mechanical and functional characterisation of a 3D porous biomimetic extracellular matrix to study insulin secretion from pancreatic β-cell lines.

In Vitro Model

December 2024

Univ. Lille, Inserm, CHU Lille, Institut Pasteur Lille, U1167 - RID-AGE - Facteurs de Risque Et Déterminants Moléculaires Des Maladies Liées Au Vieillissement, F-59000 Lille, France.

Background: Extracellular matrix (ECM) is a three-dimensional (3D) structure found around cells in the tissues of many organisms. It is composed mainly of fibrous proteins, such as collagen and elastin, and adhesive glycoproteins, such as fibronectin and laminin-as well as proteoglycans, such as hyaluronic acid. The ECM performs several essential functions, including structural support of tissues, regulation of cell communication, adhesion, migration, and differentiation by providing biochemical and biomechanical cues to the cells.

View Article and Find Full Text PDF

The reason why certain bacteria, , (PA), produce acetylated alginate (Alg) in their biofilms remains one of the most intriguing facts in microbiology. Being the main structural component of the secreted biofilm, like the one formed in the lungs of cystic fibrosis (CF) patients, Alg plays a crucial role in protecting the bacteria from environmental stress and potential threats. Nonetheless, to investigate the PA biofilm environment and its lack of susceptibility to antibiotic treatment, the currently developed biofilm models use native seaweed Alg, which is a non-acetylated Alg.

View Article and Find Full Text PDF

A novel synthesis of a nanometric MCM-41 from biogenic silica obtained from rice husk is here presented. CTABr and Pluronic F127 surfactants were employed as templating agents to promote the formation of a long-range ordered 2D-hexagonal structure with cylindrical pores and to limit the particle growth at the nanoscale level thus resulting in a material with uniform particle size of 20-30 nm. The physico-chemical properties of this sample (RH-nanoMCM) were investigated through a multi-technique approach, including PXRD, Si MAS NMR, TEM, -potential and N physisorption analysis at 77 K.

View Article and Find Full Text PDF

Purpose: The main purpose of the study was the formulation development of nanogels (NHs) composed of chondroitin sulfate (CS) and low molecular weight chitosan (lCH), loaded with a naringenin-β-cyclodextrin complex (NAR/β-CD), as a potential treatment for early-stage diabetic retinopathy.

Methods: Different formulations of NHs were prepared by varying polymer concentration, lCH ratio, and pH and, then, characterized for particle size, zeta potential, particle concentration (particles/mL) and morphology. Cytotoxicity and internalization were assessed in vitro using Human Umbilical Vein Endothelial Cells (HUVEC).

View Article and Find Full Text PDF

Nuclear export protein (NEP) of the influenza A virus, being one of the key components of the virus life cycle, is a promising model for studying characteristics of formation of amyloids by viral proteins. Using atomic force microscopy, comparative study of aggregation properties of the recombinant NEP variants, including the protein of natural structure, as well as modified variants with N- and C-terminal affinity His-tags, was carried out. All protein variants under physiological conditions are capable of forming aggregates of various morphologies: micelle-like nanoparticles, flexible protofibrils, rigid amyloid fibrils, etc.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!