The immune system produces a diverse collection of antiglycan antibodies that are critical for host defense. At present, however, we know very little about the binding properties, origins, and sequences of these antibodies because of a lack of access to a variety of defined individual antibodies. To address this challenge, we used a glycan microarray with over 800 different components to screen a panel of 516 human monoclonal antibodies that had been randomly cloned from different B-cell subsets originating from healthy human subjects. We obtained 26 antiglycan antibodies, most of which bound microbial carbohydrates. The majority of the antiglycan antibodies identified in the screen displayed selective binding for specific glycan motifs on our array and lacked polyreactivity. We found that antiglycan antibodies were about twice as likely than expected to originate from IgG memory B cells, whereas none were isolated from naïve, early emigrant, or immature B cells. Therefore, our results indicate that certain B-cell subsets in our panel are enriched in antiglycan antibodies, and IgG memory B cells may be a promising source of such antibodies. Furthermore, some of the newly identified antibodies bound glycans for which there are no reported monoclonal antibodies available, and these may be useful as research tools, diagnostics, or therapeutic agents. Overall, the results provide insight into the types and properties of antiglycan antibodies produced by the human immune system and a framework for the identification of novel antiglycan antibodies in the future.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9576894 | PMC |
http://dx.doi.org/10.1016/j.jbc.2022.102468 | DOI Listing |
Antibodies (Basel)
December 2024
Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Science, 117991 Moscow, Russia.
Naturally occurring human antibodies against glycans recognize and quickly eliminate infectious bacteria, viruses and aberrantly glycosylated neoplastic malignant cells, and they often initiate processes that involve the complement system. Using a printed glycan array (PGA) containing 605 glycoligands (oligo- and polysaccharides, glycopeptides), we examined which of the glycan-binding antibodies are able to activate the complement system. Using this PGA, the specificities of antibodies of the IgM and IgG classes were determined in the blood serum of healthy donors (suggested as mostly natural), and, then, using the same array, it was determined which types of the bound immunoglobulins were also showing C3 deposition.
View Article and Find Full Text PDFAnal Chem
December 2024
School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China.
Fibroblast activation protein (FAP) is an important antigen in the tumor microenvironment, which plays a crucial role in promoting extracellular matrix remodeling and tumor cell metastasis. A circulating form of soluble FAP has also been identified in the serum, becoming a biomarker for pan-cancer diagnosis and prognosis. However, the current peptide substrate-based enzymatic activity detection or antibody-dependent detection methods have been hindered by insufficient selectivity and complex operations, so it is valuable to develop effective nucleic acid aptamers as FAP affinity ligands.
View Article and Find Full Text PDFbioRxiv
October 2024
Department of Microbiology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham AL 35294, USA.
The human antibody repertoire is broadly reactive with carbohydrate antigens represented in the universe of all living things, including both the host/self- as well as the commensal microflora-derived glycomes. Here we have used BCR receptor cloning and expression together with single-cell transcriptomics to analyze the B cell repertoire to the ubiquitous N-acetyl-D-glucosamine (GlcNAc) epitope in human cohorts and dissect the immune phylogeny of this predominant class of antibodies. We find that circulating anti-GlcNAc B cells exhibiting canonical BMem phenotypes emerge rapidly after birth and couple this observation with evidence for germinal center-dependent affinity maturation of carbohydrate-specific B cell receptors during early childhood.
View Article and Find Full Text PDFTetrahedron
September 2024
Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA.
We developed a method for making immune responses to bacterial glycans T cell-dependent, which involves attachment of short, synthetic glycans to a virus-like nanoparticle (VLP). This strategy enhances immune responses to glycans by facilitating cognate T cell help of B cells, leading to antibody class switching and affinity maturation yielding high-affinity, anti-glycan antibodies. This method requires synthesis of bacterial glycans as propargyl glycosides for covalent attachment to VLPs, and the resulting short linker between the VLP and glycan is important for optimal T cell receptor recognition.
View Article and Find Full Text PDFFront Immunol
August 2024
Department of Pathology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, United States.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!