Silver nanoparticles instigate physiological, genotoxicity, and ultrastructural anomalies in midgut tissues of beetles.

Chem Biol Interact

Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, P.O. Box: 21934, Alexandria, Egypt; University Medical Center Göttingen, Georg-August-University, 37073 Göttingen, Germany. Electronic address:

Published: November 2022

Silver nanoparticles (AgNPs) have long been materials of great interest in numerous fields; however, there is escalating alarm over their toxicity to public health since exposure to these particles is inevitable. This study sheds light on the deleterious impacts of AgNPs on the midgut tissues of beetles (Blaps polychresta) collected from Egypt as a biological model. The investigations were conducted on the beetles administered with a sublethal dose of AgNPs (0.03 mg/g body weight) after 30 days. Oxidative stress parameters and antioxidant enzyme activities were assessed, which exposed critical disruption in the antioxidant defense system of treated beetles. Remarkably, metallothionein (MT) gene expression was significantly increased, while reduced glutathione (GSH) level was notably decreased in midgut tissues subjected to AgNPs. These findings manifestly imply the presence of overproduction in terms of reactive oxygen species (ROS) inside the cells. Additionally, DNA impairment and apoptosis of midgut cells were appraised employing comet and flow cytometry analyses, respectively. The comet results revealed a significant increase in comet cells for the AgNPs treated beetles compared with the control group. Furthermore, the apoptosis results demonstrated a substantial diminution in viable cells with significant growth in apoptotic cells in midgut cells exposed to AgNPs, manifesting their striking correlation with comet and biochemical findings. Noticeably, the histopathological and ultrastructural inspections revealed substantial aberrations in the midgut tissues in the AgNPs treated group, substantiating the previous results. As far as we know, no research has been found that surveyed how the AgNPs at low doses affect the midgut tissues of beetles. Overall, these findings evince the aberrant influences of AgNPs on living organisms.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cbi.2022.110166DOI Listing

Publication Analysis

Top Keywords

midgut tissues
20
tissues beetles
12
agnps
9
silver nanoparticles
8
treated beetles
8
midgut cells
8
agnps treated
8
midgut
7
beetles
6
cells
6

Similar Publications

Bombyx mori nuclear polyhedrosis, caused by B. mori nucleopolyhedrovirus (BmNPV), threatens sericulture seriously. To explore strategies for controlling it, the UDP glycosyltransferase gene UGT41A3 (BmUGT41A3) was targeted.

View Article and Find Full Text PDF

The steroid hormone 20-hydroxyecdysone inhibits RAPTOR expression by repressing Hox gene transcription to induce autophagy.

J Biol Chem

December 2024

Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao 266237, China. Electronic address:

Regulatory-associated protein of TOR (RAPTOR) is a key component of TOR complex 1 (TORC1), which determines the lysosomal location and substrate recruitment of TORC1 to promote cell growth and prevent autophagy. Many studies in recent decades have focused on the posttranslational modification of RAPTOR; however, little is known about the transcriptional regulatory mechanism of Raptor. Using the lepidopteran insect cotton bollworm (Helicoverpa armigera) as model, we reveal the transcriptional regulatory mechanism of Raptor.

View Article and Find Full Text PDF

Single-cell profiling of the amphioxus digestive tract reveals conservation of endocrine cells in chordates.

Sci Adv

December 2024

Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.

Despite their pivotal role, the evolutionary origins of vertebrate digestive systems remain enigmatic. We explored the cellular characteristics of the amphioxus () digestive tract, a model for the presumed primitive chordate digestive system, using bulk tissue companioned with single-cell RNA sequencing. Our findings reveal segmentation and a rich diversity of cell clusters, and we highlight the presence of epithelial-like, ciliated cells in the amphioxus midgut and describe three types of endocrine-like cells that secrete insulin-like, glucagon-like, and somatostatin-like peptides.

View Article and Find Full Text PDF

Analysis of associated malformations by computed tomography in adults with polysplenia syndrome: A pilot study.

PLoS One

December 2024

Department of Medical Imaging, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School of Nanjing Medical University, Suzhou, Jiangsu, China.

Objective: To analytically depict the associated malformations of polysplenia syndrome (PS) in adults via computed tomography (CT).

Materials And Methods: The incidence of malformations associated with PS in twelve adult patients was retrospectively analyzed via CT imaging.

Results: The number of splenic nodules ranged from three to twelve; the splenic nodules were located in the left upper quadrant in nine patients and in the right upper quadrant in three patients.

View Article and Find Full Text PDF

Ecytonucleospora hepatopenaei (EHP), a microsporidian parasite first named and characterized from the Penaeus monodon (black or giant tiger shrimp), causes growth retardation and poses a significant threat to shrimp farming. We observed shrimp farms associated with disease conditions during our fish disease surveillance and health management program in West Bengal, India. Shrimp exhibited growth retardation and increased size variability, particularly in advanced stages, exhibiting soft shells, lethargy, reduced feeding and empty midguts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!