A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Fabrication of trimethylphosphine-functionalized anion exchange membranes for desalination application via electrodialysis process. | LitMetric

Fabrication of trimethylphosphine-functionalized anion exchange membranes for desalination application via electrodialysis process.

Chemosphere

Departamento de Química Orgánica Universidad de Córdoba, Edificio Marie Curie (C 3), Campus de Rabanales, Ctra Nnal IV-A, Km 396, E14014, Córdoba, Spain; Peoples Friendship University of Russia (RUDN University), 6 Miklukho Maklaya Str., 117198, Moscow, Russian Federation.

Published: December 2022

The design of conductive, improved durable and selective anion exchange membranes (AEMs) for desalination application via electrodialysis (ED) process is critical for a more sustainable future. This work reports the design of a series of homogeneous trimethylphosphine (TMP)-functionalized anion exchange membranes (AEMs) for desalination application via electrodialysis (ED) process. Physico-chemical characterization and electrochemical performance of the trimethylphosphine-functionalized anion exchange membranes was conducted and the activity found to be tuned by varying the quantity of trimethylphosphine into the membrane architecture. For anion exchange membranes M1 to M4, the ion exchange capacity (IEC) was increased from 1.35 to 2.16 mmol/g, water uptake (W) from 4.30 to 17.72%, linear expansion ratio (LER) from 3.70 to 12.50% with enhancing the quantity of trimethylphosphine into the polymer architecture. The ionic resistance decreased from 15.14 to 2.61 Ω cm with increasing quantities of trimethylphosphine whereas transport number increased from 0.98 to 0.99. The performance of synthesized trimethylphosphine-functionalized anion exchange membranes in desalination of NaCl was evaluated via electrodialysis process (flux of 3.42 mol/m. h and current efficiency of 64.30%). Results showed that the prepared trimethylphosphine-functionalized membrane (optimum M4) possess improved desalination performance as compared to commercial membrane Neosepta AMX under identical experimental conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2022.136330DOI Listing

Publication Analysis

Top Keywords

anion exchange
24
exchange membranes
24
electrodialysis process
16
trimethylphosphine-functionalized anion
12
desalination application
12
application electrodialysis
12
membranes desalination
8
membranes aems
8
aems desalination
8
quantity trimethylphosphine
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!