Synergistic regulation of kinetic reaction pathway and surface structure degradation in single-crystal high-nickel cathodes.

J Colloid Interface Sci

Engineering Research Center of the Ministry of Education for Advanced Battery Materials, School of Metallurgy and Environment, Central South University, Changsha 410083, PR China. Electronic address:

Published: January 2023

As a promising high energy density cathode, single-crystal Ni-rich cathode face poor diffusion dynamics, which leads to poor structural evolution, poor cyclic stability and unfavorable rate performance, thus impeding its wider application. Herein, the strategy of synergistic surface modification by ionic conductor coating and trace element doping is delicately designed. The surface protective LiBO layer is wrapped on the single-crystal LiNiCoMnO (NCM83), which can improve the compatibility of cathode/electrolyte with reduced interface resistance. While Zr is incorporated into bulk to stabilize the crystal structure and migration channel. This synergistic strategy achieves the improvement of ionic transport and structural stability of single-crystal NCM83 (Zr-NCM83@B) from the outer surface to the inner body. As expected, the modified cathode Zr-NCM83@B demonstrates a satisfying electrochemical performance. It delivers a high reversible capacity of 169 mAh g in coin-type half-cell at 4C within 3.0-4.3 V. Remarkably, it displays excellent capacity retention of 83.5 % in Zr-NCM83@B || graphite pouch-type full-cell over 1400 cycles at 1C with high voltage range of 2.8-4.4 V. This synergistic surface modification provides a reference for commercial development of advanced single-crystal Ni-rich cathode under harsh testing conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2022.08.184DOI Listing

Publication Analysis

Top Keywords

single-crystal ni-rich
8
ni-rich cathode
8
synergistic surface
8
surface modification
8
surface
5
single-crystal
5
synergistic
4
synergistic regulation
4
regulation kinetic
4
kinetic reaction
4

Similar Publications

Single-crystal high-nickel oxide with an integral structure can prevent intergranular cracks and the associated detrimental reactions. Yet, its low surface-to-volume ratio makes surficial degradation a more critical factor in electrochemical performance. Herein, artificial proton-rich (ammonium bicarbonate) shell is successfully introduced on the nickel-rich LiNiCoMnO single crystals for in situ electrochemically conversing into inorganic maskant to enhance stability of cathode.

View Article and Find Full Text PDF

The delamination cracking from planar gliding along the (003) facets and anisotropic lattice strain perpendicular to the (003) facets inevitable lead to degradation of Ni-rich single-crystal cathode materials, adversely affecting their cyclability. Herein, we rationally design a single-crystal LiNiCoMnO (SC90) cathode with robust chemo-mechanical properties, in which coherently grown MgO octahedra and BO tetrahedra are incorporated into the lattice, and a stabilizing Mg(BO) layer is concurrently formed on the particle surface. Multiscale in/ex situ characterizations and theoretical calculations indicate that introducing the MgO and BO units leads to a "pinning effect" within the layered structure.

View Article and Find Full Text PDF

Single-crystalline Ni-rich layered oxides are one of the most promising cathode materials for lithium-ion batteries due to their superior structural stability. However, sluggish lithium-ion diffusion kinetics and interfacial issues hinder their practical applications. These issues intensify with increasing Ni content in the ultrahigh-Ni regime (≥90%), significantly threatening the practical viability of the single-crystalline strategy for ultrahigh-Ni layered oxide cathodes.

View Article and Find Full Text PDF

Interfacial Robustness and Improved Kinetics of Single-Crystal Ni-Rich Co-Free Cathodes Enabled by Surface Crystal-Facet Modulation.

Nano Lett

September 2024

Engineering Research Center of the Ministry of Education for Advanced Battery Materials, School of Metallurgy and Environment, Central South University, Changsha 410083, P. R. China.

The elimination of Co from Ni-rich layered cathodes is critical to reduce the production cost and increase the energy density for sustainable development. Herein, a delicate strategy of crystal-facet modulation is designed and explored, which is achieved by simultaneous Al/W-doping into the precursors, while the surface role of the crystal-facet is intensively revealed. Unlike traditional studies on crystal structure growth along a certain direction, this work modulates the crystal-facet at the nanoscale based on the effect of W-doping dynamic migration with surface energy, successfully constructing the core-shell (003)/(104) facet surface.

View Article and Find Full Text PDF

Unveiling the Stability Mechanism of Oriented Ni-Rich Layered Oxides.

ACS Appl Mater Interfaces

September 2024

School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China.

Single-crystal and polycrystalline structures are the two main structural forms of the Ni-rich layered cathode for lithium-ion batteries. The structural difference is closely related to the electrochemical performance and thermal stability, but its internal mechanism is unclear and is worthy of further exploration. In this study, both polycrystalline and single-crystal LiNiCoMnO cathodes were prepared by adjusting the calcination temperature and mechanical post-treatment, respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!