Poly(aryl piperidinium) (PAP) anion exchange membranes (AEMs) furnish an important avenue for the commercialization of anion exchange membrane fuel cells (AEMFCs), but their ionic conductivity and alkali resistance still need to be improved. Here, we report the synthesis of PAP AEMs with a branched structure by the acid-catalyzed reaction and compare them with the main-chain AEMs. The experimental results show that the branched AEMs have higher OH conductivity and alkaline resistance than the poly(terphenyl piperidine) (PTPQ1) AEM. The alkaline stability and OH conductivity of the AEMs were further improved by a flexible multi-cation crosslinker. The results show that the branched poly(p-terphenyl triphenylmethane 1-methyl piperidine) membrane crosslinked by multi-cation (PTTPQ4-40) shows an excellent OH conductivity (155.3 mS cm) at 80 °C. The OH conductivity of the PTTPQ4-40 membrane was maintained at 92.1% after soaking in 2 M NaOH for 1080 h at 80 °C. In addition, the peak power density (PPD) of the crosslinked PTTPQ4-40 membrane can reach 656.7 mW cm. Compared to the PTPQ1 AEM, the PPD of the crosslinked PTTPQ4-40 AEM is increased by 38.6% in H-O. All of the results confirm that the PTTPQ4-40 AEM has excellent fuel cell application prospects.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2022.08.183 | DOI Listing |
Environ Geochem Health
January 2025
Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka.
Studies regarding geochemical partitioning and leaching behavior of Hofmeister ions, which is considered as a risk/causative factor for chronic kidney disease of unknown etiology (CKDu), are scarce. Therefore, Hofmeister ions' leaching behavior of partially weathered rocks from CKDu endemic (Girandurukotte) and non-endemic (Sewanagala) areas, Sri Lanka were compared. Rock mineralogy was analyzed using X-ray Diffraction, and total ion contents were determined using alkaline and acid digestions.
View Article and Find Full Text PDFACS Nano
January 2025
MIIT Key Laboratory of Advanced Display Materials and Devices, Jiangsu Province Engineering Research Center of Quantum Dot Display, School of Materials Science and Engineering, Institute of Optoelectronics & Nanomaterials, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China.
Room temperature (RT) synthesized mixed bromine and chlorine CsPbBrCl perovskite quantum dots (Pe-QDs) offer notable advantages for blue quantum dot light-emitting diodes (QLEDs), such as cost-effective processing and narrow luminescence peaks. However, the efficiency of blue QLEDs using these RT-synthesized QDs has been limited by inferior crystallinity and deep defect presence. In this study, we demonstrate a precise approach to constructing high-quality gradient core-shell (CS) structures of CsPbBrCl QD through anion exchange.
View Article and Find Full Text PDFInorg Chem
January 2025
Department of Chemistry, Franklin & Marshall College, Lancaster, Pennsylvania 17601, United States.
One method of achieving spatially specific, multi-component nanoheterostructures is to combine multiple forms of post-synthetic modification. Applying cation or anion exchange to CuS nanorods creates complex nanoheterostructures. Combining such anion and cation exchanges generates a system which uncovers the interplay between these two processes and understands the cooperativity between postsynthetic modifications more broadly.
View Article and Find Full Text PDFJ Ion Liq
December 2024
Department of Chemistry and Biochemistry, University of Nevada Las Vegas, 4505 S. Maryland Parkway, Box 454003, Las Vegas, NV 89154, United States.
Dicationic ionic liquids (DILs) are emerging as a powerful, next-generation approach to designing applied ILs because of their superior physicochemical properties as well as their diverse complexity and tunability for task specific applications. DILs are scarce in the literature compared to monocationic ILs (MILs), and one of their main issues is their expected tendency to possess higher melting temperatures. A series of 1,4-bis[2-(4-pyridyl)ethenyl] benzene and 1,4-bis[2-(2-pyridyl)ethenyl]benzene quaternary salts (Q-BPEBs) with different counterions (bromide, tosylate, and triflimide) and carbon chain lengths (C, C, and C) have been synthesized for their potential as DILs with strong photoluminescent properties in the solid state.
View Article and Find Full Text PDFBMC Chem
January 2025
Nuclear Chemistry Department, Hot Laboratories Center, Egyptian Atomic Energy Authority, P.O. 13759, Cairo, Egypt.
In this work, selenium (IV) ions were adsorbed from aqueous solutions by the strongly basic anion exchange resin Amberlite IRA-400. The morphology of the resin before and after Se(IV) sorption was investigated using different techniques such as energy dispersive X-ray spectroscopy (EDX), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). To determine the ideal sorption conditions, a batch approach was used to examine the variables affecting Se(IV) sorption performance, including pH, shaking time, adsorbent dosage, initial metal ion concentration, and temperature.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!