Cooperative strand displacement circuit with dual-toehold and bulge-loop structure for single-nucleotide variations discrimination.

Biosens Bioelectron

Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, No. 1 Yi Xue Yuan Road, Chongqing, 400016, PR China. Electronic address:

Published: November 2022

AI Article Synopsis

  • Nucleic acid nanotechnologies utilizing toehold-mediated strand displacement are effective for detecting single-nucleotide variations (SNVs), but current methods to create selective hybridization probes are limited.
  • The study introduces a new technique using a dual-toehold and bulge-loop (DT&BL) probe system that enhances specificity and control over reaction rates during SNV detection.
  • The developed biosensor demonstrated strong performance in identifying cancer-related genes and showed promise for clinical diagnostics with high accuracy and reliability.

Article Abstract

Nucleic acid nanotechnologies based on toehold-mediated strand displacement are ideally suited for single-nucleotide variations (SNVs) detection. But only a limited number of means could be used to construct selective hybridization probes via finely designed toehold and regulation of branching migration. Herein, we present a cooperative hybridization strategy relying on a dual-toehold and bulge-loop (DT&BL) probe, coupled with the strand displacement catalytic (SDC) cycle to identify SNVs. The dual-toehold can simultaneously hybridize the 5' and 3' ends of the target, so that it possessed the mutual correction function for improving the specificity in comparison with the single target-binding domain. Insertion of BLs into the dual-toehold probe allows tuning of Gibbs free energy change (ΔG) and control of the reaction rate during branching migration. Using the SDC cycle, the reactivity and selectivity of the DT&BL probe were increased drastically without elaborate competitive sequences. The feasibilities of this platform were demonstrated by the identification of three cancer-related genes. Moreover, the applicability of this biosensor to detect clinical samples showed satisfactory accuracy and reliability. We envision it would offer a new perspective for the construction of highly specific probes based on dynamic DNA nanotechnology, and serves as a promising tool for clinical diagnostics.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bios.2022.114677DOI Listing

Publication Analysis

Top Keywords

strand displacement
12
dual-toehold bulge-loop
8
single-nucleotide variations
8
branching migration
8
dt&bl probe
8
sdc cycle
8
cooperative strand
4
displacement circuit
4
dual-toehold
4
circuit dual-toehold
4

Similar Publications

MicroRNAs (miRNAs) regulate a myriad of biological processes and thus have been regarded as useful biomarkers in biomedical research and clinical diagnosis. The specific and highly sensitive detection of miRNAs is of significant importance. Herein, a sensitive and rapid dual-amplification elemental labeling single-particle inductively coupled plasma-mass spectrometry (spICP-MS) analytical method based on strand displacement amplification (SDA) and CRISPR/Cas12a was developed for miRNA-21 detection.

View Article and Find Full Text PDF

Fluorescent biosensor for ultra-stability detection of Pax-5a based on a double cascade amplification strategy.

Spectrochim Acta A Mol Biomol Spectrosc

December 2024

Key Laboratory of Energy Catalysis and Conversion of Nanchang, College of Chemistry and Materials, Jiangxi Normal University, Nanchang 330022, PR China. Electronic address:

The development of B-lymphoblastic leukemia is tightly associated with aberrant expression of Pax-5a. This work presented a novel dual signal amplification strategy-based Pax-5a detection method by combining the rolling circle amplification reaction (RCA) and the Entropy-driven toehold-mediated strand displacement (ETSD). Particularly noteworthy is the employed ETSD, which effectively improves the rate and stability of the reaction due to its unique entropy-driven principle.

View Article and Find Full Text PDF

Near-Infrared Light-Activated DNA Nanodevice for Spatiotemporal In Vivo Fluorescence Imaging of Messenger RNA.

Anal Chem

December 2024

State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China.

Real-time visualization of messenger RNA (mRNA) is essential for tumor classification, grading, and staging. However, the low signal-to-background ratios and nonspatiotemporal specific signal amplification restricted the in vivo imaging of mRNA. In this study, a near-infrared (NIR) light-activated DNA nanodevice (DND) was developed for spatiotemporal in vivo fluorescence imaging of mRNA.

View Article and Find Full Text PDF

Homologous recombination (HR) is a high-fidelity DNA repair pathway that uses a homologous DNA sequence as a template. Recombinase proteins are the central HR players in the three kingdoms of life. RecA/RadA/Rad51 assemble on ssDNA, generated after the processing of double-strand breaks or stalled replication forks into an active and dynamic presynaptic helical nucleofilament.

View Article and Find Full Text PDF

Research has shown that the expression level of microRNA-155 (miRNA-155) is positively correlated with clinical stage and depth of invasion in patients with cervical cancer and cervical intraepithelial neoplasia and tends to be highly expressed. Therefore, it is very important to develop sensitive miRNA-155 analysis methods for the early diagnosis, treatment, and prognostic evaluation of cervical cancer. In this study, a near-infrared light-driven fluorescent biosensor based on the metal-enhanced fluorescence effect of polydopamine-coated upconversion nanoparticle (UP/Au) and two toehold-mediated strand displacement (TMSD) steps was constructed for the detection of miRNA-155.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!