A Bioinformatic Framework for Dissecting the Dynamics of T Cells from Single-Cell Transcriptome.

Methods Mol Biol

Gaoke International Innovation Center, Shenzhen City, Guangdong Province, People's Republic of China.

Published: September 2022

The quantitative tracking of the dynamics of T cells is challenging in human immunology. Although bulk sequencing of T cell receptor (TCR) α- and β-chains has been widely used for determining the clonality of T cells, such methods are limited in unveiling the phenotypic differences of T cells with the same clonotypes. Here, we describe a bioinformatics framework, STARTRAC, that integrates the single-cell transcriptome and TCR sequences as lineage-specific markers to quantitatively assess the dynamics of T cells, including their clonal expansion, tissue migration, and developmental transition properties.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-0716-2712-9_14DOI Listing

Publication Analysis

Top Keywords

dynamics cells
12
single-cell transcriptome
8
cells
5
bioinformatic framework
4
framework dissecting
4
dissecting dynamics
4
cells single-cell
4
transcriptome quantitative
4
quantitative tracking
4
tracking dynamics
4

Similar Publications

scMMAE: masked cross-attention network for single-cell multimodal omics fusion to enhance unimodal omics.

Brief Bioinform

November 2024

Guangdong Provincial Key Laboratory of Mathematical and Neural Dynamical Systems, Great Bay University, No. 16 Daxue Rd, Songshanhu District, Dongguan, Guangdong, 523000, China.

Multimodal omics provide deeper insight into the biological processes and cellular functions, especially transcriptomics and proteomics. Computational methods have been proposed for the integration of single-cell multimodal omics of transcriptomics and proteomics. However, existing methods primarily concentrate on the alignment of different omics, overlooking the unique information inherent in each omics type.

View Article and Find Full Text PDF

Spatial distribution-based progression of spinal cord injury pathology: a key role for neuroimmune cells.

Front Immunol

January 2025

Shanghai TCM-Integrated Hospital, Shanghai University of TCM, Department of Neurosurgery, Shanghai, China.

An external trauma, illness, or other pathological cause can harm the structure and function of the spinal cord, resulting in a significant neurological disorder known as spinal cord injury (SCI). In addition to impairing movement and sensory functions, spinal cord injury (SCI) triggers complex pathophysiological responses, with the spatial dynamics of immune cells playing a key role. The inflammatory response and subsequent healing processes following SCI are profoundly influenced by the spatial distribution and movement of immune cells.

View Article and Find Full Text PDF

The innate immune system plays a critical role in the rapid recognition and elimination of pathogens through pattern recognition receptors (PRRs). Among these PRRs are the C-type lectins (CTLs) langerin, mannan-binding lectin (MBL), and surfactant protein D (SP-D), which recognize carbohydrate patterns on pathogens. Each represents proteins from different compartments of the body and employs separate effector mechanisms.

View Article and Find Full Text PDF

Single-cell RNA sequencing elucidates cellular plasticity in esophageal small cell carcinoma following chemotherapy treatment.

Front Genet

January 2025

Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China.

Small cell carcinoma of the esophagus (SCCE) is a rare and aggressively progressing malignancy that presents considerable clinical challenges.Although chemotherapy can effectively manage symptoms during the earlystages of SCCE, its long-term effectiveness is notably limited, with theunderlying mechanisms remaining largely undefined. In this study, weemployed single-cell RNA sequencing (scRNA-seq) to analyze SCCE samplesfrom a single patient both before and after chemotherapy treatment.

View Article and Find Full Text PDF

Penfluridol targets septin7 to suppress endometrial cancer by septin7-Orai/IP3R-Ca-PIK3CA pathway.

iScience

January 2025

State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.

Phenotypic screening of existing drugs is a good strategy to discover new drugs. Herein, 33 psychotherapeutic drugs in our drug library were screened by phenotypic screening and penfluridol (PFD) was found to exhibit excellent anti-endometrial cancer (EC) activity both and . Furthermore, the molecular target of PFD was identified as septin7, a tumor suppressor in EC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!