Spectroscopic and QM/MM studies of the Cu(I) binding site of the plant ethylene receptor ETR1.

Biophys J

John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre (JSC), Institute of Biological Information Processing (IBI-7: Structural Bioinformatics), and Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich GmbH, Jülich, Germany; Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany. Electronic address:

Published: October 2022

Herein, we present, to our knowledge, the first spectroscopic characterization of the Cu(I) active site of the plant ethylene receptor ETR1. The x-ray absorption (XAS) and extended x-ray absorption fine structure (EXAFS) spectroscopies presented here establish that ETR1 has a low-coordinate Cu(I) site. The EXAFS resolves a mixed first coordination sphere of N/O and S scatterers at distances consistent with potential histidine and cysteine residues. This finding agrees with the coordination of residues C65 and H69 to the Cu(I) site, which are critical for ethylene activity and well conserved. Furthermore, the Cu K-edge XAS and EXAFS of ETR1 exhibit spectroscopic changes upon addition of ethylene that are attributed to modifications in the Cu(I) coordination environment, suggestive of ethylene binding. Results from umbrella sampling simulations of the proposed ethylene binding helix of ETR1 at a mixed quantum mechanics/molecular mechanics level agree with the EXAFS fit distance changes upon ethylene binding, particularly in the increase of the distance between H69 and Cu(I), and yield binding energetics comparable with experimental dissociation constants. The observed changes in the copper coordination environment might be the triggering signal for the transmission of the ethylene response.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9674993PMC
http://dx.doi.org/10.1016/j.bpj.2022.09.007DOI Listing

Publication Analysis

Top Keywords

ethylene binding
12
site plant
8
ethylene
8
plant ethylene
8
ethylene receptor
8
receptor etr1
8
x-ray absorption
8
cui site
8
h69 cui
8
coordination environment
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!