Objectives: Investigating the efficacy and safety of noninvasive cerebellar stimulation in improving the balance and walking function of patients with stroke.
Methods: We searched 7 databases for randomized controlled trials (RCTs) related to noninvasive cerebellar stimulation in the treatment of stroke. The Berg Balance Scale (BBS), 6-minute walk test (6MWT), and Barthel Index (BI) were used as the outcome indexes to evaluate balance, walking and activities of daily living (ADL). The quality of the research was evaluated using the Cochrane Risk of Bias Tool. A meta-analysis was performed to evaluate the difference between the noninvasive cerebellar stimulation and control groups. Heterogeneity tests were performed to assess differences in treatment effects across noninvasive cerebellar stimulation modalities. A sensitivity analysis was performed to evaluate the robustness of the results.
Results: Seven studies were included, and 5 articles (71.43%) were rated as having a low risk of bias. Among the primary outcome indicators, 4 of the 7 articles were combined into the fixed effect model (I2 = 38%, P = .18). Compared with the control group, noninvasive cerebellar stimulation improved the BBS score, and the difference was statistically significant (mean difference [MD]: 3.00, 95% confidence interval [CI]: 1.10-5.40, P = .03); the sensitivity analysis showed that the statistical model was still stable after sequentially eliminating each article. Compared with the control group, noninvasive cerebellar stimulation improved the 6MWT results of patients with stroke (MD: 25.29, 95% CI: 4.86-45.73, P = .02). However, noninvasive cerebellar stimulation did not improve the BI (MD: 15.61, 95% CI: -7.91 to 39.13, P = .19). No safety problems or adverse reactions to noninvasive cerebellar stimulation were observed.
Conclusions: Noninvasive cerebellar stimulation improves balance and walking function of patients with stroke, but its effect on ADL is uncertain. Due to the methodological weaknesses in the included trials, more RCTs are needed to confirm our conclusions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10980459 | PMC |
http://dx.doi.org/10.1097/MD.0000000000030302 | DOI Listing |
Cerebellum
January 2025
Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, USA.
The cerebellum is involved in non-motor processing, supported by topographically distinct cerebellar activations and closed-loop circuits between the cerebellum and the cortex. Disruptions to cerebellar function may negatively impact prefrontal function and processing. Cerebellar resources may be important for offloading cortical processing, providing crucial scaffolding for normative performance and function.
View Article and Find Full Text PDFAppl Radiat Isot
December 2024
Department of Isotope Application Research, National Atomic Research Institute, Taoyuan City, Taiwan, ROC.
Histone deacetylase 6 (HDAC6) is an enzyme crucial in epigenetic regulation and protein degradation, with implications in various cancers and neurodegenerative disorders. While HDAC6 is recognized as a promising therapeutic target for Parkinson's and Alzheimer's diseases, its involvement in spinocerebellar ataxias (SCAs) remains underexplored. Currently, there are no direct methods available for characterizing HDAC6 in the brains of living subjects.
View Article and Find Full Text PDFCerebellum
January 2025
Department of Neuroscience and Physiology, Grossman School of Medicine, NYU Neuroscience Institute, New York University, New York, NY, 10016, USA.
Cerebellum
January 2025
Department of Neuroscience, University of Mons, Mons, Belgium.
As brain-machine interfaces (BMI) are growingly used in clinical settings, understanding how to apply brain stimulation is increasingly important. Despite the emergence of optogenetic techniques, ethical and medical concerns suggest that interventions that are safe and non-invasive, such as Transcranial Alternating Current Stimulation (tACS), are more likely to be employed in human in the near future. Consequently, the question of how and where to apply current stimulation is becoming increasingly important for the efficient neuromodulation of both neurological and psychiatric disorders.
View Article and Find Full Text PDFFront Neurol
December 2024
Department of Neurology, The First Hospital of Hebei Medical University, Hebei, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!