This work investigates the feasibility of having a mattress based wireless power transfer system with transfer efficiency such that the received power could potentially be enough to fully power up wearable systems intended to provide some level of continuous physiological monitoring; hence eliminating the need for users to ever have to recharge the systems. The novel architecture proposed in this work, to optimise power transfer efficiency against angular misalignment typical of non-static use is based on a non-coupling coil structure combined with a magnetic beamforming scheme. The coil system also incorporates a non-coupling relay array to overcome the significant loss in power transfer efficiency associated to increasing distances between transmitters and receivers. The system is proven to be able to deliver around 11.8mW of power in the worst-case scenario, with a receiver 25cm above the transmitters, whilst meeting the safety requirements associated to electromagnetic exposure to the human body.

Download full-text PDF

Source
http://dx.doi.org/10.1109/EMBC48229.2022.9871937DOI Listing

Publication Analysis

Top Keywords

power transfer
12
transfer efficiency
12
mattress based
8
physiological monitoring
8
power
7
proof-of-concept mattress
4
based power
4
power harvesting
4
system
4
harvesting system
4

Similar Publications

Dispersive gains enhance wireless power transfer with asymmetric resonance.

Rep Prog Phys

January 2025

School of Electrical Engineering, Xi'an Jiaotong University, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, CHINA.

Parity-time symmetry is a fundamental concept in non-Hermitian physics that has recently gained attention for its potential in engineering advanced electronic systems and achieving robust wireless power transfer even in the presence of disturbances, through the incorporation of nonlinearity. However, the current parity-time-symmetric scheme falls short of achieving the theoretical maximum efficiency of wireless power transfer and faces challenges when applied to non-resistive loads. In this study, we propose a theoretical framework and provide experimental evidence demonstrating that asymmetric resonance, based on dispersive gain, can greatly enhance the efficiency of wireless power transfer beyond the limits of symmetric approaches.

View Article and Find Full Text PDF

The current study presents a multiphysics numerical model for a micro-planar proton-conducting solid oxide fuel cell (H-SOFC). The numerical model considered an anode-supported H-SOFC with direct internal reforming (DIR) of methane. The model solves coupled nonlinear equations, including continuity, momentum, mass transfer, chemical and electrochemical reactions, and energy equations.

View Article and Find Full Text PDF

In the area of thermal management, thermal control elements (TCEs) and thermal control circuits (TCCs) are proving to be innovative solutions to the challenges of temperature control and heat dissipation in various applications, ranging from electronic cooling to energy conversion and temperature control in buildings. Their integration promises to improve power density, energy efficiency, system reliability and system life expectancy. With the aim of connecting researchers in the field of thermal management and accelerating the development of TCEs and TCCs, we have developed an open-source TCC simulation tool called TCCbuilder that enables a quick and easy time-dependent 1D numerical analysis of the behavior of TCEs and TCCs.

View Article and Find Full Text PDF

Organic-inorganic formamidinium lead triiodide (FAPbI) hybrid perovskite quantum dots (QDs) have garnered considerable attention in the photovoltaic field due to their narrow bandgap, exceptional environmental stability, and prolonged carrier lifetime. Unfortunately, their insulating ligands and surface vacancy defects pose significant obstacles to efficient charge transfer across device interfaces. In this work, an electrostatic harmonization strategy at the interface using a donor-acceptor dipole molecular attachment to achieve enhanced charge separation capabilities on the QD surface is ventured.

View Article and Find Full Text PDF

Improving the interface characteristics between the hole-transport layer (HTL) and perovskite absorber layer is crucial for achieving maximum efficiency in inverted perovskite solar cells (PSCs). This paper presents an effective functional compensation layer (FCL) composed of benzothiophene derivatives, particularly 5-(trifluoromethyl)-1-benzothiophene-2-carboxylic acid (TFMBTA); this layer is introduced between the MeO-2PACz HTL and perovskite absorber layer to improve the interfacial characteristics between them. This FCL improves charge transfer, hole extraction, and perovskite deposition by improving the surface morphology of the HTL and optimizing the energy level alignment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!