Handwriting is an important component of academic curricula and grapho-motor skills (GMS) support learning, reading, memory and self-confidence. Teachers and clinicians report increase in children experiencing problems with acquiring fluid and legible handwriting. To date gold-standard tests evaluating children's GMS, mostly rely on pen and paper tests, requiring extensive coding time and subject to high inter-rater variability. This work presents preliminary data on a new digital platform for Grapho-motor Handwriting Evaluation & Exercise (GHEE), attempting to overcome limitations of available digitalized methods for GMS evalution. In fact, contrary to previous systems, GHEE design originated from comparisons among multiple standardized tests and was based on a human-machine interaction approach. GHEE hardware and software is presented as well as data on preliminary testing. Cursive handwriting data from six adult volunteers was analyzed according to six parameters of relevance, both automatically (i.e., using GHEE software) and manually (i.e., by a human coder). Comparisons among machine and human data sets allowed parsing out parameters to be extracted automatically and parameters requiring human-machine interaction. Results confirmed platform efficacy and feasibility of the proposed approach.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/EMBC48229.2022.9871538 | DOI Listing |
J Neuroeng Rehabil
December 2024
School of Information Science and Technology, Fudan University, Shanghai, 200433, China.
For surface electromyography (sEMG) based human-machine interaction systems, accurately recognizing the users' gesture intent is crucial. However, due to the existence of subject-specific components in sEMG signals, subject-specific models may deteriorate when applied to new users. In this study, we hypothesize that in addition to subject-specific components, sEMG signals also contain pattern-specific components, which is independent of individuals and solely related to gesture patterns.
View Article and Find Full Text PDFPLoS One
December 2024
Division of Medical Information Sciences, Geneva University Hospitals, Geneva, Switzerland.
The essence of language and its evolutionary determinants have long been research subjects with multifaceted explorations. This work reports on a large-scale observational study focused on the language use of clinicians interacting with a phrase prediction system in a clinical setting. By adopting principles of adaptation to evolutionary selection pressure, we attempt to identify the major determinants of language emergence specific to this context.
View Article and Find Full Text PDFNanomicro Lett
December 2024
State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, People's Republic of China.
Wearable pressure sensors capable of adhering comfortably to the skin hold great promise in sound detection. However, current intelligent speech assistants based on pressure sensors can only recognize standard languages, which hampers effective communication for non-standard language people. Here, we prepare an ultralight TiCT MXene/chitosan/polyvinylidene difluoride composite aerogel with a detection range of 6.
View Article and Find Full Text PDFNPJ Sci Learn
December 2024
Academy of Medical Engineering and Translational Medicine (AMT), Tianjin University, Tianjin, China.
Generalization is central to motor learning. However, few studies are on the learning generalization of BCI-actuated supernumerary robotic finger (BCI-SRF) for human-machine interaction training, and no studies have explored its longitudinal neuroplasticity mechanisms. Here, 20 healthy right-handed participants were recruited and randomly assigned to BCI-SRF group or inborn finger group (Finger) for 4-week training and measured by novel SRF-finger opposition sequences and multimodal MRI.
View Article and Find Full Text PDFJ Neuroeng Rehabil
December 2024
The School of Information Science and Technology, Dalian Maritime University, Dalian, 116026, China.
Background: Simultaneous and proportional control (SPC) based on surface electromyographic (sEMG) signals has emerged as a research hotspot in the field of human-machine interaction (HMI). However, the existing continuous motion estimation methods mostly have an average Pearson coefficient (CC) of less than 0.85, while high-precision methods suffer from the problem of long inference time (> 200 ms) and can only estimate SPC of less than 15 hand movements, which limits their applications in HMI.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!