A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A Fast and Memory-Efficient Brain MRI Segmentation Framework for Clinical Applications. | LitMetric

AI Article Synopsis

  • * The paper introduces FLBS, a memory-efficient segmentation framework that adapts based on memory constraints and performs multi-label segmentation by combining single-label results, which reduces GPU requirements.
  • * FLBS maintains accuracy comparable to state-of-the-art methods while significantly lowering hardware needs, making it ideal for clinics with budget constraints and ready for release as a free clinical tool.

Article Abstract

Current segmentation tools of brain MRI provide quantitative structural information for diagnosing neurological disorders. However, their clinical application is generally limited due to high memory usage and time consumption. Although 3D CNN-based segmentation methods have recently achieved the state-of-the-art and come up with timely available results, they heavily require high memory GPUs. In this paper, we customize a memory-efficient (GPU) brain structure segmentation framework, named FLBS, based on nnU-nets which enables our framework to adapt its architecture based on memory constraints dynamically. To further reduce the need for memory, we also reduce multi-label brain segmentation to the fusion of sequential single-label segmentations. In the first step, single label patches are extracted from the T1w and segmentation maps by locating the approximate area of each structure on the MNI305 template, including the safety margin. These considerations not only decrease the hardware usage but also maintains comparable computational time. Moreover, the target brain structures are customizable based on the specific clinical applications. We evaluate the performance in terms of Dice coefficient, runtime, and GPU requirement on OASIS-3 and CoRR-BNU1 datasets. The validation results show our comparable accuracies with state-of-the-arts and confirm the generalizability on unseen datasets while significantly reducing GPU requirements and maintaining runtime duration. Our framework is also executable on a budget GPU with a minimum requirement of 4G RAM. Clinical Relevance- We develop a memory-efficient deep Brain MRI segmentation tool that significantly reduces the hardware requirement of MRI segmentation while maintaining comparable accuracy and time. These advantages make FLBS suitable for widespread use in clinical applications especially for clinics with a limited budget. We plan to release the framework as a part of a free clinical brain imaging analysis tool. The code for this framework is publicly available.

Download full-text PDF

Source
http://dx.doi.org/10.1109/EMBC48229.2022.9871715DOI Listing

Publication Analysis

Top Keywords

brain mri
12
mri segmentation
12
clinical applications
12
segmentation
8
segmentation framework
8
high memory
8
brain
7
framework
6
clinical
6
fast memory-efficient
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: