Medical augmented reality and simulated test environments struggle in accurately simulating local sensor measurements across large spatial domains while maintaining the proper resolution of information required and real time capability. Here, a simple method for real-time simulation of intraoperative sensors is presented to aid with medical sensor development and professional training. During a surgical intervention, the interaction between medical sensor systems and tissue leads to mechanical deformation of the tissue. Through the inclusion of detailed finite element simulations in a real-time augmented reality system the method presented will allow for more accurate simulation of intraoperative sensor measurements that are independent of the mechanical state of the tissue. This concept uses a coarse, macro-level deformation mesh to maintain both computational speed and the illusion of reality and a simple geometric point mapping method to include detailed fine mesh information. The resulting system allows for flexible simulation of different types of localized sensor measurement techniques. Preliminary simulation results are provided using a real-time capable simulation environment and prove the feasibility of the method.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/EMBC48229.2022.9871932 | DOI Listing |
Lab Chip
January 2025
Nanobioelectronics Laboratory (NBEL), Department of Biomedical Engineering, Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, 8410501 Beer Sheva, Israel.
Dissolved oxygen is crucial for metabolism, growth, and other complex physiological and pathological processes; however, standard physiological models (such as organ-on-chip systems) often use ambient oxygen levels, which do not reflect the lower levels that are typically found . Additionally, the local generation of reactive oxygen species (ROS; a key factor in physiological systems) is often overlooked in biology-mimicking models. Here, we present a microfluidic system that integrates electrochemical dissolved oxygen sensors with lab-on-a-chip technology to monitor the physiological oxygen concentrations and generate hydrogen peroxide (HO; a specific ROS).
View Article and Find Full Text PDFACS Nano
January 2025
School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Republic of Singapore.
Hydrogel-based sensors have been widely studied for perceiving the environment. However, the simplest type of resistive sensors still lacks sensitivity to localized strain and other extractable data. Enhancing their sensitivity and expanding their functionality to perceive multiple stimuli simultaneously are highly beneficial yet require optimal material design and proper testing methods.
View Article and Find Full Text PDFHeliyon
December 2024
Department of Computer Science & Engineering, K L E F Deemed To Be University, Green Fields, Vaddeswaram, Guntur (dt), Andhra Pradesh, 521230, India.
Real-time monitoring and anomaly detection are essential in healthcare to ensure safe conditions for patients and maintain the integrity of medical data samples. The majority of existing systems, despite improvements in healthcare technologies, cannot capture the spatial and temporal patterns of multimodal data simultaneously, process high Volume data in real-time, and ensure the privacy of patients' identity effectively. In this work, we handle these limitations by proposing a complete approach that uses state-of-the-art deep learning and data processing architectures to realize resilient anomaly detection in healthcare systems.
View Article and Find Full Text PDFHeliyon
December 2024
Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
Propofol, a widely used intravenous anesthetic agent, requires accurate monitoring to ensure therapeutic efficacy and prevent oversedation. Recent developments in modern analytical instrumentation have led to significant breakthroughs in on-line analysis of exhaled breath. This review discusses several sophisticated analytical methods that have been explored for noninvasive, real-time monitoring of propofol concentrations, including proton transfer reaction mass spectrometry, selected ion flow tube mass spectrometry, ion mobility spectrometry, and gas chromatography coupled to surface acoustic wave sensors.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
December 2024
National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, GuangRong Dao 8, Hongqiao District, Tianjin 300130, PR China. Electronic address:
Fluoroquinolone antibiotic residues, ofloxacin (OFX) have aroused more attention because of their serious influence on surface water and food area, which seriously affect human health. Herein, a visible and high-performance sensor method for detecting OFX is fabricated successfully by co-assembling bimetallic Ln (Eu/Tb) and amino-clay named EuTb(BZ)@AC. By changing the ultraviolet excitation wavelength, the sensor displayed high sensitivity and low detection limit to OFX in different modes of detection OFX, which are ratiometric luminescent sensor and turn-on luminescent sensor approaches.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!