A large portion of the elderly population are affected by cardiovascular diseases. The early prognosis of cardiomyopathies is still a challenge. The aim of this study was to classify cardiomyopathy patients by their etiology in function of significant indexes extracted from the characterization of the recurrence plot of the systems involved. Thirty-nine cardiomyopathy patients (CMP) classified as ischemic (ICM - 24 patients) and dilated (DCM-15 patients) were considered. In addition, thirty-nine control subjects (CON) were used as reference. The beat-to-beat (BBI) time series, from the electrocardiographic signal, the systolic (SBP), and diastolic (DBP) time series, from the blood pressure signal, and the respiratory time (FLW) from the respiratory flow signal, were extracted. The recurrence plot from each signal considered were calculated and characterized by a total of 12 indexes. The best classifiers were used to build support vector machine models. The optimal model to classify ICM versus DCM patients achieved 92.3% accuracy, 95.8% sensitivity, and 86.6% specificity. When comparing CMP patients and CON subjects, the best model achieved 85.8% accuracy, 92.3% sensitivity, and 80.1% specificity. Our results suggest a more deterministic behavior in DCM patients. Clinical Relevance - This study explores the recurrence plot for the classification of ICM and DCM patients.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/EMBC48229.2022.9871298 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!