Among the non-invasive methods employed for brain stimulation, trans cranial Focused Ultrasound Stimulation (tFUS) is the technique with the best penetration into the tissues and spatial resolution. The development of computational models of US propagation in brain tissue can be useful for estimating the behaviour of neural cells subjected to mechanical stimulus due to US. This paper aims at studying the neural cell response of a cortical Regular Spiking point neuron model, for different values of stimulus Duty Cycle (DC). The main goal is to use a multiscale approach to couple the results obtained from a macroscale simulation on wave propagation in tissue, with neuron model described by Hodgkin-Huxley equations to study latency and firing rate of the RS model. The obtained results showed that latency and firing rate have slight variations along the propagation direction of the US beam, in the focal region under the skull model, for different stimulus DC.

Download full-text PDF

Source
http://dx.doi.org/10.1109/EMBC48229.2022.9871341DOI Listing

Publication Analysis

Top Keywords

multiscale approach
8
neuron model
8
latency firing
8
firing rate
8
approach tfus
4
tfus neurocomputational
4
neurocomputational modelling
4
modelling non-invasive
4
non-invasive methods
4
methods employed
4

Similar Publications

Immune cell engagers are molecular agents, usually antibody-based constructs, engineered to recruit immune cells against cancer cells and kill them. They are versatile and powerful tools for cancer immunotherapy. Despite the multiplication of engagers tested and accepted in the clinic, how molecular and cellular parameters influence their actions is poorly understood.

View Article and Find Full Text PDF

The accurate identification of protein-nucleotide binding residues is crucial for protein function annotation and drug discovery. Numerous computational methods have been proposed to predict these binding residues, achieving remarkable performance. However, due to the limited availability and high variability of nucleotides, predicting binding residues for diverse nucleotides remains a significant challenge.

View Article and Find Full Text PDF

Background: Blood-based biomarkers are becoming emerging tools, easily detectable and minimally invasive, to reveal neurodegeneration and neuroinflammation in Alzheimer's disease (AD). However, a comprehensive and up-to-date overview of the association between blood-based biomarkers and brain parameters as measured by MRI is not available. The aim of this review is to fill this gap and clarify the relationship between the main peripheral blood-based protein biomarkers (i.

View Article and Find Full Text PDF

Introduction: Segmentation tasks in computer vision play a crucial role in various applications, ranging from object detection to medical imaging and cultural heritage preservation. Traditional approaches, including convolutional neural networks (CNNs) and standard transformer-based models, have achieved significant success; however, they often face challenges in capturing fine-grained details and maintaining efficiency across diverse datasets. These methods struggle with balancing precision and computational efficiency, especially when dealing with complex patterns and high-resolution images.

View Article and Find Full Text PDF

The delocalization length of charge carriers in organic semiconductors influences their mobility and is an important factor in the design of functional materials. Here, we have studied the radical anions of a series of linear and cyclic butadiyne-linked porphyrin oligomers using CW-EPR, H Mims ENDOR and NIR/MIR spectroelectrochemistry together with DFT calculations and multiscale molecular modeling. Low-temperature hyperfine EPR spectroscopy and optical data show that polarons are delocalized nonuniformly over about four porphyrins with most of the spin density on just two units even in the cyclic structures, in which all porphyrin sites are identical.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!