Noise exposure is encountered nearly everyday in both recreational and occupational settings, and can lead to a number of health concerns including hearing-loss, tinnitus, social-isolation and possibly dementia. Although guidelines exist to protect workers from noise, it remains a challenge to accurately quantify the noise exposure experienced by an individual due to the complexity and non-stationarity of noise sources. This is especially true for impulsive noise sources, such as weapons fire and industrial impact noise which are difficult to quantify due to technical challenges relating to sensor design and size, weight and power requirements. Because of this, personal noise dosimeters are often limited to a maximum 140 dB SPL and are not sufficient to measure impulse noise. This work details the design of a body-worn noise dosimeter (mNOISE) that processes both impulse and continuous noise ranging in level from 40 dBA-185 dBP (i.e. a quiet whisper to a shoulder fired rocket). Also detailed is the capability of the device to log the kurtosis of the sound pressure waveform in real-time, which is thought to be useful in characterizing complex noise exposures. Finally, we demonstrate the use of mNOISE in a military-flight noise environment. Clinical Relevance- On-body noise exposure monitoring can be used by audiologists industrial hygiene personnel and others to determine threshold of injury adequate hearing protection requirements and ultimately reduce permanent noise-induced hearing loss.

Download full-text PDF

Source
http://dx.doi.org/10.1109/EMBC48229.2022.9871674DOI Listing

Publication Analysis

Top Keywords

noise
14
noise exposure
12
impulsive noise
8
noise sources
8
development evaluation
4
evaluation body-worn
4
body-worn dosimeter
4
dosimeter continuous
4
continuous impulsive
4
noise noise
4

Similar Publications

Soft and stretchable strain sensors are crucial for applications in human-machine interfaces, flexible robotics, and electronic skin. Among these, capacitive strain sensors are widely used and studied; however, they face challenges due to material and structural constraints, such as low baseline capacitance and susceptibility to external interference, which result in low signal-to-noise ratios and poor stability. To address these issues, we propose a U-shaped electrode flexible strain sensor based on liquid metal elastomer (LME).

View Article and Find Full Text PDF

Compressive electron backscatter diffraction imaging.

J Microsc

January 2025

Department of Mechanical, Materials and Aerospace Engineering, University of Liverpool, Liverpool, UK.

Electron backscatter diffraction (EBSD) has developed over the last few decades into a valuable crystallographic characterisation method for a wide range of sample types. Despite these advances, issues such as the complexity of sample preparation, relatively slow acquisition, and damage in beam-sensitive samples, still limit the quantity and quality of interpretable data that can be obtained. To mitigate these issues, here we propose a method based on the subsampling of probe positions and subsequent reconstruction of an incomplete data set.

View Article and Find Full Text PDF

The misuse of personalized listening devices (PLDs) resulting in noise-induced hearing loss (NIHL) has become a public health concern, especially among youths, including medical students. The occupational use of PLDs that produce high-intensity sounds amplifies the danger of cochlear deterioration and high-frequency NIHL especially when used in noisy environments. This study aims to evaluate the incidence and trends of NIHL among medical students using PLDs.

View Article and Find Full Text PDF

Efficacy of Segmentation for Hyperspectral Target Detection.

Sensors (Basel)

January 2025

Department of Electrical and Computer Engineering, Ben-Gurion University of the Negev, Beer Sheva blvd 1, Beer-Sheva 84105, Israel.

Algorithms for detecting point targets in hyperspectral imaging commonly employ the spectral inverse covariance matrix to whiten inherent image noise. Since data cubes often lack stationarity, segmentation appears to be an attractive preprocessing operation. Surprisingly, the literature reports both successful and unsuccessful segmentation cases, with no clear explanations for these divergent outcomes.

View Article and Find Full Text PDF

Satellite-ground communication is a critical component in the global communication system, significantly contributing to environmental monitoring, radio and television broadcasting, aerospace operations, and other domains. However, the technology encounters challenges in data transmission efficiency, due to the drastic alterations in the communication channel caused by the rapid movement of satellites. In comparison to traditional transmission methods, semantic communication (SemCom) technology enhances transmission efficiency by comprehending and leveraging the intrinsic meaning of information, making it ideal for image transmission in satellite communications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!