Multi-site collaboration, which gathers together samples from multiple sites, is a powerful way to overcome the small-sample problem in the neuroimaging field and has the potential to discover more robust and reproducible biomarkers. However, confounds among the datasets caused by various site-specific factors may dramatically reduce the cross-site reproducibility performance. To properly remove confounds while improving cross-site task performances, we propose a maximum classifier discrepancy generative adversarial network (MCD-GAN) that combines the advantages of generative models and maximum discrepancy theory. The mechanisms of MCD-GAN and how it harmonizes the dataset are visualized using simulated data. The performance of MCD-GAN was also compared with state-of-the-art methods (e.g., ComBat, cycle-GAN) within Adolescent Brain Cognitive Development (ABCD) dataset. Result demonstrates that the proposed MCD-GAN can effectively improve the cross-site gender classification performance by harmonizing site effects. Our proposed framework is also suitable for various classification/prediction tasks and is promising to facilitate the cross-site reproducibility of neuroimaging studies. Clinical Relevance- This work provides an efficient method for removing sites effects and improving reproducibility in large-cohort neuroimaging studies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10590630PMC
http://dx.doi.org/10.1109/EMBC48229.2022.9871061DOI Listing

Publication Analysis

Top Keywords

neuroimaging studies
12
adversarial network
8
site effects
8
effects improving
8
improving reproducibility
8
reproducibility neuroimaging
8
cross-site reproducibility
8
'harmless' adversarial
4
network harmonization
4
harmonization approach
4

Similar Publications

Historically, psychiatric diagnoses have been made based on patient's reported symptoms applying the criteria from diagnostic and statistical manual of mental disorders. The utilization of neuroimaging or biomarkers to make the diagnosis and manage psychiatric disorders remains a distant goal. There have been several studies that examine brain imaging in psychiatric disorders, but more work is needed to elucidate the complexities of the human brain.

View Article and Find Full Text PDF

Apolipoprotein E4 (APOE4) is the strongest genetic risk factor for sporadic Alzheimer's disease (AD). Individuals with one copy of APOE4 exhibit greater amyloid-beta (Aβ) deposition compared to noncarriers, an effect that is even more pronounced in APOE4 homozygotes. Interestingly, APOE4 carriers not only show more AD pathology but also experience more rapid cognitive decline, particularly in episodic memory.

View Article and Find Full Text PDF

While PTSD continues to be researched in great depth, less attention has been given to the continuum of traumatic responses that resides outside this diagnosis. This investigation begins with a literature review examining the spectrum of responses through the lens of the default mode network (DMN). To build upon this literature, a systematic exploratory study was incorporated, examining DMN-related neuropsychological functioning of 27 participants (16 trauma-exposed, and 11 non-trauma-exposed), with a subset (15 participants) completing neuroimaging.

View Article and Find Full Text PDF

VASARI 2.0: a new updated MRI VASARI lexicon to predict grading and status in brain glioma.

Front Oncol

December 2024

NeuroRadiology Unit, Ospedale del Mare, Azienda Sanitaria Locale Napoli 1 Centro (ASL NA1 Centro), Naples, Italy.

Introduction: Precision medicine refers to managing brain tumors according to each patient's unique characteristics when it was realized that patients with the same type of tumor differ greatly in terms of survival, responsiveness to treatment, and toxicity of medication. Precision diagnostics can now be advanced through the establishment of imaging biomarkers, which necessitates quantitative image acquisition and processing. The VASARI (Visually AcceSAble Rembrandt Images) manual annotation methodology is an ideal and suitable way to determine the accurate association between genotype and imaging phenotype.

View Article and Find Full Text PDF

Objectives: Glutathione S-transferase alpha (GSTα) is an important antioxidant enzyme closely associated with the onset and progression of neurodegenerative diseases. The alterations in GSTα protein levels associated with Alzheimer's disease and their impact on cognitive abilities remain unclear. Thus, investigating the fluctuations of GSTα protein levels in mild cognitive impairment (MCI) and Alzheimer's disease (AD) is essential.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!