Treatment for critical size defects (CSDs) in bone often use bone grafts to act as a scaffold to help complete healing. Biological scaffolds require bone extraction from the individual or an outside donor while synthetic grafts mostly suffer from poor degradation kinetics and decreased bioactivity. In this study, we investigated a 3D printed scaffold derived from a novel composite bioink composed of alginate and collagen augmented with varying doses from 2 m g/ m L to 20 m g/ m L of 1% strontium-calcium polyphosphate (SCPP) to control biodegradability and fluid uptake. Scaffolds with increased SCPP concentrations showed higher particle density, lesser swelling ratio and greater biodegradability indicating that these critically important properties for bone healing are fine-tunable and highly dependent on SCPP dosing. Clinical Relevance- The dosing of 1% SCPP into porous alginate/collagen scaffolds provides adjustable long-term degradation and material properties suitable for potential in vivo CSD applications.

Download full-text PDF

Source
http://dx.doi.org/10.1109/EMBC48229.2022.9871871DOI Listing

Publication Analysis

Top Keywords

alginate/collagen scaffolds
8
bone
5
controlled biodegradation
4
biodegradation swelling
4
swelling strontium-doped
4
strontium-doped alginate/collagen
4
scaffolds
4
scaffolds bone
4
bone tissue
4
tissue engineering
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!