Within cellular barriers, cells are separated by basement membranes (BMs), nanometer-thick extracellular matrix layers. In existing in-vitro cellular-barrier models, cell-to-cell signaling can be preserved by culturing different cells in individual chambers separated by a semipermeable membrane. Their structure does not always replicate the BM thickness nor diffusion through it. Here, a porous polymeric nanofilm made of poly(D-L-lactic acid) (PDLLA) is proposed to recreate the BM in a microfluidic blood-brain-barrier model. Nanofilms showed an average thickness of [Formula: see text] and a maximum pore diameter of 1.6 μm. Human umbilical vein endothelial cells (HUVECs) were cultured on PDLLA. After 7 days, viability was >95% and cell morphology did not show relevant differences with HUVECs grown on control substrates. A protocol for suspending the nanofilm between 2 microfluidic chambers was identified and showed no leakage and good sealing. Clinical Relevance- Preclinical models of cellular barriers are a key step towards a deeper understanding of their roles in pathogenesis of various diseases: a physiologically relevant microfluidic model of the blood brain barrier (BBB) allows high-throughput investigations of BBB contribution in neurodegenerative diseases and cruelty-free screenings of drugs targeting the brain.

Download full-text PDF

Source
http://dx.doi.org/10.1109/EMBC48229.2022.9870981DOI Listing

Publication Analysis

Top Keywords

cellular barriers
12
recreating cellular
4
barriers human
4
human microphysiological
4
microphysiological systems
4
systems in-vitro
4
in-vitro cellular
4
barriers cells
4
cells separated
4
separated basement
4

Similar Publications

Glioblastoma (GBM) is the most common malignant primary brain tumor, with a mean survival of less than 2 years. Unique brain structures and the microenvironment, including blood-brain barriers, put great challenges on clinical drug development. Sophoricoside (Sop), an isoflavone glycoside isolated from seeds of Sophora japonica L.

View Article and Find Full Text PDF

Background: Immunoglobulin A (IgA) plays a crucial role in the maturation the neonatal mucosal barrier. The accumulation of IgA antibody-secreting cells (ASCs) in the lactating mammary gland facilitates the secretion of IgA antibodies into milk, which are then passively to the suckling newborn, providing transient immune protection against gastrointestinal pathogens. Physiologically, full-term infants are unable to produce IgA, required for mucosal barrier maturation for at least 10 days after birth.

View Article and Find Full Text PDF

Sodium valproate enhances efficacy of NKG2D CAR-T cells against glioblastoma.

Front Immunol

January 2025

Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.

Chimeric antigen receptor T-cell (CAR-T) therapies have shown promise in glioblastoma clinical studies, but responses remain inconsistent due to heterogeneous tumor antigen expression and immune evasion post-treatment. NKG2D CAR-T cells have demonstrated a favorable safety profile in patients with hematologic tumors, and showed robust antitumor efficacy in various xenograft models, including glioblastoma. However, malignant glioma cells evade immunological surveillance by reducing NKG2D ligands expression or cleavage.

View Article and Find Full Text PDF

Resistance to radiotherapy remains a critical barrier in treating colorectal cancer (CRC), particularly in cases of locally advanced rectal cancer (LARC). To identify key kinases involved in CRC radioresistance, we employed a kinase-targeted CRISPR-Cas9 library screen. This approach aimed to identify potential kinase inhibitors as radiosensitizers.

View Article and Find Full Text PDF

Tanshinone I Ameliorates Psoriasis-Like Dermatitis by Suppressing Inflammation and Regulating Keratinocyte Differentiation.

Drug Des Devel Ther

January 2025

Department of Dermatology, Second Xiangya Hospital, Hunan Key Laboratory of Medical Epigenomics, Clinical Medical Research Center of Major Skin Diseases and Skin Health of Hunan Province, Central South University, Changsha, Hunan, People's Republic of China.

Background: Psoriasis is an immune-related inflammatory systemic condition characterized by dysregulated keratinocyte proliferation and chronic inflammation. Tanshinone I (Tan-I) has recently been discovered to have immunomodulatory properties, but its role and mechanisms in treating psoriasis remain unclear.

Objective: To evaluate the efficacy of Tan-I in the treatment of psoriasis and to determine the mechanisms involved.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!