In the context of epilepsy monitoring, EEG artifacts are often mistaken for seizures due to their morphological simi-larity in both amplitude and frequency, making seizure detection systems susceptible to higher false alarm rates. In this work we present the implementation of an artifact detection algorithm based on a minimal number of EEG channels on a parallel ultra-low-power (PULP) embedded platform. The analyses are based on the TUH EEG Artifact Corpus dataset and focus on the temporal electrodes. First, we extract optimal feature models in the frequency domain using an automated machine learning framework, achieving a 93.95% accuracy, with a 0.838 F1 score for a 4 temporal EEG channel setup. The achieved accuracy levels surpass state-of-the-art by nearly 20%. Then, these algorithms are parallelized and optimized for a PULP platform, achieving a 5.21x improvement of energy-efficient compared to state-of-the-art low-power implementations of artifact detection frameworks. Combining this model with a low-power seizure detection algorithm would allow for 300h of continuous monitoring on a 300 mAh battery in a wearable form factor and power budget. These results pave the way for implementing affordable, wearable, long-term epilepsy monitoring solutions with low false-positive rates and high sensitivity, meeting both patients' and caregivers' requirements. Clinical relevance- The proposed EEG artifact detection framework can be employed on wearable EEG recording devices, in combination with EEG-based epilepsy detection algorithms, for improved robustness in epileptic seizure detection scenarios.

Download full-text PDF

Source
http://dx.doi.org/10.1109/EMBC48229.2022.9871413DOI Listing

Publication Analysis

Top Keywords

artifact detection
16
eeg artifact
12
seizure detection
12
detection
8
epilepsy monitoring
8
detection algorithm
8
eeg
7
artifact
5
energy-efficient tree-based
4
tree-based eeg
4

Similar Publications

Significance: The precise identification and preservation of functional brain areas during neurosurgery are crucial for optimizing surgical outcomes and minimizing postoperative deficits. Intraoperative imaging plays a vital role in this context, offering insights that guide surgeons in protecting critical cortical regions.

Aim: We aim to evaluate and compare the efficacy of intraoperative thermal imaging (ITI) and intraoperative optical imaging (IOI) in detecting the primary somatosensory cortex, providing a detailed assessment of their potential integration into surgical practice.

View Article and Find Full Text PDF

Objective: The detection of arterial pulsating signals at the skin periphery with Photoplethysmography (PPG) are easily distorted by motion artifacts. This work explores the alternatives to the aid of PPG reconstruction with movement sensors (accelerometer and/or gyroscope) which to date have demonstrated the best pulsating signal reconstruction.

Approach: A generative adversarial network with fully connected layers (FC-GAN) is proposed for the reconstruction of distorted PPG signals.

View Article and Find Full Text PDF

High-sensitivity total-body PET enables faster scans, lower doses, and dynamic multiorgan imaging. However, the higher system cost of a scanner with a long axial field of view (AFOV) hinders its wider application. This paper investigates the impact on the lesion quantification and detectability of cost-effective total-body PET sparse designs.

View Article and Find Full Text PDF

i-Motifs (iMs) are quadruplex nucleic acid conformations that form in cytosine-rich regions. Because of their acidic pH dependence, iMs were thought to form only in vitro. The recent development of an iM-selective antibody, iMab, has allowed iM detection in cells, which revealed their presence at gene promoters and their cell cycle dependence.

View Article and Find Full Text PDF

This study proposes a hierarchical automated methodology for detecting brain tumors in Magnetic Resonance Imaging (MRI), focusing on preprocessing images to improve quality and eliminate artifacts or noise. A modified Extreme Learning Machine is then used to diagnose brain tumors that are integrated with the Modified Sailfish optimizer to enhance its performance. The Modified Sailfish optimizer is a metaheuristic algorithm known for efficiently navigating optimization landscapes and enhancing convergence speed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!