This paper reports the application of a low-cost diagnostic modality for fat analysis in a liver phantom as well as human liver donors. The device works on the principle of diffuse reflectance spectroscopy, which absorbs and/or scatters depending upon the molecules that compose a tissue. Here, we describe the development of liver phantom of varying fat concentration using saturated fat mimicking liver steatosis. Followed by a pilot study in the human liver donor setting. Later, handheld device based on Infrared-LED and Photodetector for real-time time assessment of live donor liver and fat assessment. Clinical Relevance- This device can be used in the development of an accurate and non-invasive for quantification of liver fat in the deceased donor selection process. It has an error margin of 10% in the quantification of fat which is comparable to a standard biopsy technique.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/EMBC48229.2022.9871515 | DOI Listing |
Sensors (Basel)
January 2025
LabTAU, INSERM, F-69003 Lyon, France.
In the field of ultrasound therapy, the estimation of temperature to monitor treatments is becoming essential. We hypothesize that it is possible to measure temperature directly using a constant acoustic power burst. Under the assumption that the acoustic attenuation does not change significantly with temperature, the thermal strain induced by such bursts presents a linear relation with temperature.
View Article and Find Full Text PDFMed Phys
January 2025
Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland.
Background: Total-body (TB) Positron Emission Tomography (PET) is one of the most promising medical diagnostics modalities, opening new perspectives for personalized medicine, low-dose imaging, multi-organ dynamic imaging or kinetic modeling. The high sensitivity provided by total-body technology can be advantageous for novel tomography methods like positronium imaging, demanding the registration of triple coincidences. Currently, state-of-the-art PET scanners use inorganic scintillators.
View Article and Find Full Text PDFPhys Med
January 2025
Department of Radiation Oncology, IRCCS Sacro Cuore Don Calabria Hospital, Via Don A. Sempreboni 5, 37024 Negrar di Valpolicella, VR, Italy; University of Brescia, Brescia, Italy.
Purpose: Adaptive MRgRT by 1.5 T MR-linac requires independent verification of the plan-of-the-day by the primary TPS (Monaco) (M). Here we validated a Monte Carlo-based dose-check including the magnetostatic field, SciMoCa (S).
View Article and Find Full Text PDFEJNMMI Phys
January 2025
Department of Nuclear Medicine, Rambam Health Care Campus, P.O.B. 9602, 3109601, Haifa, Israel.
Background: A recently released digital solid-state positron emission tomography/x-ray CT (PET/CT) scanner with bismuth germanate (BGO) scintillators provides an artificial intelligence (AI) based system for automatic patient positioning. The efficacy of this digital-BGO system in patient placement at the isocenter and its impact on image quality and radiation exposure was evaluated.
Method: The digital-BGO PET/CT with AI-based auto-positioning was compared (χ, Mann-Whitney tests) to a solid-state lutetium-yttrium oxyorthosilicate (digital-LYSO) PET/CT with manual patient positioning (n = 432 and 343 studies each, respectively), with results split into groups before and after the date of a recalibration of the digital-BGO auto-positioning camera.
Ultrasonics
January 2025
Medical Ultrasound Department for the Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, China. Electronic address:
Shear Wave Elastography (SWE) is an imaging technique that detects shear waves generated by tissue excited by Acoustic Radiation Force (ARF), and characterizes the mechanical properties of soft tissue by analyzing the propagation velocity of shear wave. ARF induces a change in energy density through the nonlinear propagation of ultrasound waves, which drives the tissue to generate shear waves. However, the amplitude of shear waves generated by ARF is weak, and the shear waves are strongly attenuated in vivo.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!