Identifying different functional regions during a brain surgery is a challenging task usually performed by highly specialized neurophysiologists. Progress in this field may be used to improve in situ brain navigation and will serve as an important building block to minimize the number of animals in preclinical brain research required by properly positioning implants intraoperatively. The study at hand aims to correlate recorded extracellular signals with the volume of origin by deep learning methods. Our work establishes connections between the position in the brain and recorded high-density neural signals. This was achieved by evaluating the performance of BLSTM, BGRU, QRNN and CNN neural network architectures on multisite electrophysiological data sets. All networks were able to successfully distinguish cortical and thalamic brain regions according to their respective neural signals. The BGRU provides the best results with an accuracy of 88.6 % and demonstrates that this classification task might be solved in higher detail while minimizing complex preprocessing steps.

Download full-text PDF

Source
http://dx.doi.org/10.1109/EMBC48229.2022.9871702DOI Listing

Publication Analysis

Top Keywords

neural signals
8
brain
6
machine learning
4
learning approaches
4
approaches classify
4
classify anatomical
4
anatomical regions
4
regions rodent
4
rodent brain
4
brain high
4

Similar Publications

The safety and reliability of rotating machinery hinge significantly on the proper functioning of rolling bearings. In the last few years, there have been significant advances in the algorithms for intelligent fault diagnosis of bearings. However, the vibration signals collected by machines are inevitably affected by irrelevant noise because of the complex working environments of bearings.

View Article and Find Full Text PDF

Regressions on quantum neural networks at maximal expressivity.

Sci Rep

December 2024

Departamento de Física, Universidad Carlos III de Madrid, Avda. de la Universidad 30, 28911, Leganés, Spain.

Considering a universal deep neural network organized as a series of nested qubit rotations, accomplished by adjustable data re-uploads we analyze its expressivity. This ability to approximate continuous functions in regression tasks is quantified making use of a partial Fourier decomposition of the generated output and systematically benchmarked with the aid of a teacher-student scheme. While the maximal expressive power increases with the depth of the network and the number of qubits, it is fundamentally bounded by the data encoding mechanism.

View Article and Find Full Text PDF

Novel Human Activity Recognition (HAR) methodologies, which are built upon learning algorithms and employ ubiquitous sensors, have achieved remarkable precision in the identification of sports activities. Such progress benefits all age groups of humanity, and in the future, AI will be used to address difficult problems in scientific research. A novel approach is introduced in this article to utilize motion sensor data in order to categorize and distinguish various categories of sports activities.

View Article and Find Full Text PDF

Addressing the issues of a single-feature input channel structure, scarcity of training fault data, and insufficient feature learning capabilities in noisy environments for intelligent diagnostic models of mechanical equipment, we propose a method based on a one-dimensional and two-dimensional dual-channel feature information fusion convolutional neural network (1D_2DIFCNN). By constructing a one-dimensional and two-dimensiona dual-channel feature information fusion convolutional network and introducing a Convolutional Block Attention Mechanism, we utilize Random Overlapping Sampling Technique to process raw vibration signals. The model takes as inputs both one-dimensional data and two-dimensional Continuous Wavelet Transform images.

View Article and Find Full Text PDF

Biological systems are complex, encompassing intertwined spatial, molecular and functional features. However, methodological constraints limit the completeness of information that can be extracted. Here, we report the development of INSIHGT, a non-destructive, accessible three-dimensional (3D) spatial biology method utilizing superchaotropes and host-guest chemistry to achieve homogeneous, deep penetration of macromolecular probes up to centimeter scales, providing reliable semi-quantitative signals throughout the tissue volume.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!