AI Article Synopsis

  • Current artificial disc prostheses have limited range of motion, prompting the need for a new intervertebral disc design using advanced materials like carbon fiber and hydrogel loaded with stem cells.
  • Biomechanical evaluations of the new design showed promising results, indicating it mimics preclinical conditions and possesses the desired mechanical properties for spinal support.
  • Traditional surgical treatments for cervical spondylosis often fail to restore full movement and may lead to complications such as fatigue and improper bone attachment, highlighting the importance of improved prostheses.

Article Abstract

Most of the current artificial disc prosthesis presented a restricted range of motion. Here we propose the design of a novel intervertebral disc composed of carbon fiber, hyaluronic methylcellulose hydrogel loaded with mesenchymal stem cells and polycaprolactone. The prosthesis was biomechanically evaluated under two static physiological conditions to study the mechanical influence of the material on the device. The results obtained in the simulations showed a not only a congruent behavior with preclinical condition, but also that the proposed materials met the desired biomechanical properties Clinical Relevance- Cervical spondylosis is a degenerative disease of the human spine that causes wear and tear of the cervical intervertebral discs. Nowadays, the proposed surgical solutions do not allow fully recovery of normal movement because the surgical intervention do not emulate the natural range of motion, may lack shock absorption mechanisms, show signs of fatigue over time affecting its durability, and do not have good bone adhesion. Therefore, hypermobility and problems of heterotopic ossification may restrict the range of motion.

Download full-text PDF

Source
http://dx.doi.org/10.1109/EMBC48229.2022.9871418DOI Listing

Publication Analysis

Top Keywords

range motion
12
intervertebral disc
8
cervical spondylosis
8
development intervertebral
4
disc cervical
4
spondylosis composed
4
composed seeded
4
seeded biomaterials
4
biomaterials current
4
current artificial
4

Similar Publications

Strain sensing fabrics are able to sense the deformation of the outside world, bringing more accurate and real-time monitoring and feedback to users. However, due to the lack of clear sensing mechanism for high sensitivity and high linearity carbon matrix composites, the preparation of high performance strain sensing fabric weaving is still a major challenge. Here, an elastic polyurethane(PU)-based conductive fabric(GCPU) with high sensitivity, high linearity and good hydrophobicity is prepared by a novel synergistic conductive network strategy.

View Article and Find Full Text PDF

Influence of Axial Rotation Between the Femoral Neck and Ankle Joint on Kinematics in Normal Knees: A Cross-Sectional Study.

J Am Acad Orthop Surg Glob Res Rev

January 2025

From the Department of Orthopedic Surgery, Faculty of Medicine, The University of Tokyo, Bunkyo, Tokyo (Dr. Kono, Dr. Taketomi, Dr. Kage, Dr. Inui, and Dr. Tanaka); the Department of Information Systems, Faculty of Engineering, Saitama Institute of Technology, Fukaya, Saitama (Dr. Yamazaki); the Department of Orthopedic Biomaterial Science, Osaka University Graduate School of Medicine, Suita, Osaka (Dr. Tamaki, and Dr. Tomita); the Department of Orthopedic Surgery, Saitama Medical University, Saitama Medical Center, Kawagoe, Saitama (Dr. Inui); and the Department of Health Science, Graduate School of Health Science, Morinomiya University of Medical Sciences, Suminoe, Osaka, Japan (Dr. Tomita).

Background: The effect of axial rotation between the femoral neck and ankle joint (total rotation [TR]) on normal knees is unknown. Therefore, this study aimed to investigate the TR effect on normal knee kinematics.

Methods: Volunteers were divided into groups large (L), intermediate (I), and small (S), using hierarchical cluster analysis based on TR in the standing position.

View Article and Find Full Text PDF

The present article deals with the modulation of oscillatory electroosmotic flow (EOF) and solute dispersion across a nanochannel filled with an electrolyte solution surrounded by a layer of a dielectric liquid. The dielectric permittivity of the liquid layer adjacent to supporting rigid walls is taken to be lower than that of the electrolyte solution. Besides, the aforesaid liquid layer may bear additional mobile charges, , free lipid molecules, charged surfactant molecules , which in turn lead to a nonzero charge along the liquid-liquid interface.

View Article and Find Full Text PDF

End-range movements are among the most demanding but least understood in the sport of tennis. Using male Hawk-Eye data from match-play during the 2021-2023 Australian Open tournaments, we evaluated the speed, deceleration, acceleration, and shot quality characteristics of these types of movement in men's Grand Slam tennis. Lateral end-range movements that incorporated a change of direction (CoD) were identified for analysis using k-means (end-range) and random forest (CoD) machine learning models.

View Article and Find Full Text PDF

Purpose: This study focused on reducing the margin for prostate cancer treatment using magnetic resonance imaging-guided radiotherapy by investigating the intrafractional motion of the prostate and different motion-mitigation strategies.

Methods: We retrospectively analyzed intrafractional prostate motion in 77 patients with low- to intermediate-risk prostate cancer treated with five fractions of 7.25 Gy on a 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!