This work focuses on the automatic detection of COVID-19 from the analysis of vocal sounds, including sustained vowels, coughs, and speech while reading a short text. Specifically, we use the Mel-spectrogram representations of these acoustic signals to train neural network-based models for the task at hand. The extraction of deep learnt representations from the Mel-spectrograms is performed with Convolutional Neural Networks (CNNs). In an attempt to guide the training of the embedded representations towards more separable and robust inter-class representations, we explore the use of a triplet loss function. The experiments performed are conducted using the Your Voice Counts dataset, a new dataset containing German speakers collected using smartphones. The results obtained support the suitability of using triplet loss-based models to detect COVID-19 from vocal sounds. The best Unweighted Average Recall (UAR) of 66.5 % is obtained using a triplet loss-based model exploiting vocal sounds recorded while reading.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/EMBC48229.2022.9871125 | DOI Listing |
Sensors (Basel)
January 2025
School of Computer Science and Informatics, Cardiff University, Cardiff CF24 3AA, UK.
Elephant sound identification is crucial in wildlife conservation and ecological research. The identification of elephant vocalizations provides insights into the behavior, social dynamics, and emotional expressions, leading to elephant conservation. This study addresses elephant sound classification utilizing raw audio processing.
View Article and Find Full Text PDFJ Voice
January 2025
Department of Surgery, Division of Otolaryngology, University of Wisconsin-Madison, Madison, WI. Electronic address:
Introduction: Straw phonation therapy, a form of semi-occluded vocal tract (SOVT) exercise, is commonly used to help treat various voice disorders. Although straw phonation therapy has been studied extensively for decades, the impact of straw depth on vocal function remains unexplored. This study aims to quantify the effects of various straw vocal tract insertion depths (VTID) into the vocal tract on common aerodynamic parameters such as phonation threshold pressure (PTP), phonation threshold flow (PTF), and phonation threshold power (PTW) in an ex vivo canine model.
View Article and Find Full Text PDFAudiol Res
January 2025
Otolaryngology Unit, Department of Traslational Medicine and Neuroscience-DiBrain, University of Bari, 70124 Bari, Italy.
Aim: The aim of this study was to assess the subjective experiences of adults with different cochlear implant (CI) configurations-unilateral cochlear implant (UCI), bilateral cochlear implant (BCI), and bimodal stimulation (BM)-focusing on their perception of speech in quiet and noisy environments, music, environmental sounds, people's voices and tinnitus.
Methods: A cross-sectional survey of 130 adults who had undergone UCI, BCI, or BM was conducted. Participants completed a six-item online questionnaire, assessing difficulty levels and psychological impact across auditory domains, with responses measured on a 10-point scale.
Acta Neuropsychiatr
January 2025
Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
Objective: Ultrasonic vocalisations (USVs) emitted by rats may reflect affective states. Specifically, 50 kHz calls emitted during juvenile playing are associated with positive affect. Given that depression is characterised by profound alterations in this domain, we proposed that USV calls may configure a suitable tool for assessing depressive-like states.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Behavioural Ecology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, Poznan, 61614, Poland.
Animals employ various strategies to minimize the overlap of their vocalizations with other sounds, thereby enhancing the effectiveness of their communication. However, little attention has been given to experimentally examining how the structure of the acoustic signal changes in response to various kinds of disturbances in the soundscape. In this study, I experimentally investigated whether male thrush nightingales (Luscinia luscinia) adjust their singing rate, song frequency, and song type in response to different types of artificial sounds.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!