A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Understanding How Fundus Image Quality Degradation Affects CNN-based Diagnosis. | LitMetric

Quality degradation (QD) is common in the fundus images collected from the clinical environment. Although diagnosis models based on convolutional neural networks (CNN) have been extensively used to interpret retinal fundus images, their performances under QD have not been assessed. To understand the effects of QD on the performance of CNN-based diagnosis model, a systematical study is proposed in this paper. In our study, the QD of fundus images is controlled by independently or simultaneously importing quantified interferences (e.g., image blurring, retinal artifacts, and light transmission disturbance). And the effects of diabetic retinopathy (DR) grading systems are thus analyzed according to the diagnosis performances on the degraded images. With images degraded by quantified interferences, several CNN-based DR grading models (e.g., AlexNet, SqueezeNet, VGG, DenseNet, and ResNet) are evaluated. The experiments demonstrate that image blurring causes a significant decrease in performance, while the impacts from light transmission disturbance and retinal artifacts are relatively slight. Superior performances are achieved by VGG, DenseNet, and ResNet in the absence of image degradation, and their robustness is presented under the controlled degradation.

Download full-text PDF

Source
http://dx.doi.org/10.1109/EMBC48229.2022.9871507DOI Listing

Publication Analysis

Top Keywords

fundus images
12
quality degradation
8
cnn-based diagnosis
8
quantified interferences
8
image blurring
8
retinal artifacts
8
light transmission
8
transmission disturbance
8
vgg densenet
8
densenet resnet
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!