A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Lagrangian Motion Magnification with Landmark-Prior and Sparse PCA for Facial Microexpressions and Micromovements. | LitMetric

Video motion magnification methods are motion visualization techniques that aim to magnify subtle and imper-ceptibly small motions in videos. They fall into two main groups where Eulerian methods work on the pixel grid with implicit motion information and Lagrangian methods use explicitly estimated motion and modify point trajectories. The motion in high framerate videos of faces can contain a wide variety of information that ranges from microexpressions over pulse or respiratory rate to cues on speech and affective state. In his work, we propose a novel strategy for Lagrangian motion magnification that integrates landmark information from the face as well as an approach to decompose facial motions in an unsupervised manner using sparse PCA. We decompose the estimated displacements into different movement components that are subsequently amplified selectively. We propose two approaches: A landmark-based decomposition into global and local movements and a decomposition into multiple coherent motion components based on sparse PCA. Optical flow estimation is performed using a state-of-the-art deep learning-based method that we retrain on a microexpression database. Clinical relevance- This method could be applied to the annotation and analysis of micromovements for neurocognitive assessment and even novel, medical applications where micro-motions of the face might play a role.

Download full-text PDF

Source
http://dx.doi.org/10.1109/EMBC48229.2022.9871549DOI Listing

Publication Analysis

Top Keywords

motion magnification
12
sparse pca
12
lagrangian motion
8
motion
7
magnification landmark-prior
4
landmark-prior sparse
4
pca facial
4
facial microexpressions
4
microexpressions micromovements
4
micromovements video
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!