Glaucoma is the leading cause of irreversible blindness worldwide. Currently, the only treatable risk factor for glaucoma is elevated intraocular pressure (IOP). Glaucoma is commonly caused due to a decreased permeability of the trabecular meshwork, a porous structure at the eye outlet. This prevents the effective outflow of aqueous humour, increasing IOP. This study aims to simulate both normal and glaucomatous conditions of aqueous humour flow in the eye via computational fluid dynamics (CFD). Using clinical data, an idealised geometrical model of the eye was created. Darcy's law was employed to calculate the permeability values for various IOPs, which was then applied to the CFD model. Subsequently, verifiable and validated models for a normal and glaucomatous eye were achieved. Clinical Relevance- Glaucoma surgical treatments are often met with post-operative complications due to an insufficient or even excessive outflow of aqueous humour. The resulting glaucomatous eye model from this study can be used to test how different glaucoma filtration surgeries affect the efficacy of aqueous humour outflow. In turn, the most effective glaucoma surgical procedure may be identified for specific eye geometries according to race, age, gender, etc.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/EMBC48229.2022.9871009 | DOI Listing |
Pharmaceutics
November 2024
Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, No. 280 University Town Outer Ring East Road, Guangzhou 510006, China.
Background: Internal ocular diseases, such as macular edema, uveitis, and diabetic macular edema require precise delivery of therapeutic agents to specific regions within the eye. However, the eye's complex anatomical structure and physiological barriers present significant challenges to drug penetration and distribution. Traditional eye drops suffer from low bioavailability primarily due to rapid clearance mechanisms.
View Article and Find Full Text PDFPharmaceuticals (Basel)
November 2024
Diabetes and Metabolism Research Unit, Vall d'Hebron Research Institute, 08035 Barcelona, Spain.
Early stages of diabetic retinopathy are currently considered an unmet medical need due to the lack of effective treatments beyond proper monitoring and control of glycemia and blood pressure. Sitagliptin eye drops have emerged as a new therapeutic approach against early stages of the disease, as they can prevent its main hallmarks, including both neurodegeneration and microvascular impairment. Interestingly, all of these effects occur without any glycemic systemic improvement.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Ophthalmology, University Medical Centre Ljubljana, Grablovičeva 46, 1000 Ljubljana, Slovenia.
In open-angle glaucoma, the increase in intraocular pressure (IOP) is caused by an increased resistance to aqueous humour outflow in the trabecular meshwork. Since genetic variability of matrix metalloproteinase (MMP) genes may influence extracellular matrix remodelling, we investigated their association with glaucoma risk and/or response to treatment. The retrospective part of the study included patients with primary open-angle glaucoma and ocular hypertension (OHT); in the prospective part of the study, newly diagnosed patients with POAG or OHT were randomised to receive either latanoprost or selective laser trabeculoplasty (SLT) as the initial treatment.
View Article and Find Full Text PDFLife (Basel)
December 2024
Institute of Clinical and Experimental Therapeutics, Department of Physiology, Health Sciences University Center, University of Guadalajara, Guadalajara 44340, Jalisco, Mexico.
Proliferative diabetic retinopathy (PDR) is the most severe complication of chronic hyperglycaemi stimulates oxidative stress that changes the retinal basement membrane function and provokes neovascularization, macular edema and retinal detachment. But an oxidative-antioxidant biomarker assessment in ocular matrices, such as aqueous humor (AH) and vitreous, might show the oxidative stress (OS) status in the posterior segment. Here, we show a cross-sectional analytical study of 39 patients who had a vitrectomy and assess the levels of different oxidative-antioxidant biomarkers in blood, aqueous and vitreous humor in three groups: diabetes mellitus 2 (DM2) with PDR [DM(+)PDR(+)] ( =13), DM2 without PDR [DM(+)PDR(-)] ( = 13) and non-DM2 non-PDR [DM(-)PDR(-)] as the control group ( = 13).
View Article and Find Full Text PDFGlaucoma is a leading cause of irreversible blindness, often associated with elevated intraocular pressure (IOP) due to trabecular meshwork (TM) dysfunction. Diabetes mellitus (DM) is recognized as a significant risk factor for glaucoma; however, the molecular mechanisms through which hyperglycemia affects TM function remain unclear. This study investigated the impact of high glucose on gene expression in human TM (HTM) cells to uncover pathways that contribute to TM dysfunction and glaucoma pathogenesis under diabetic conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!