Dementia with Lewy Bodies (DLB) is the second most common form of dementia, but diagnostic markers for DLB can be expensive and inaccessible, and many cases of DLB are undiagnosed. This work applies machine learning techniques to determine the feasibility of distinguishing DLB from Alzheimer's Disease (AD) using heterogeneous data features. The Repeated Incremental Pruning to Produce Error Reduction (RIPPER) algorithm was first applied using a Leave-One-Out Cross-Validation protocol to a dataset comprising DLB and AD cases. Then, interpretable association rule-based diagnostic classifiers were obtained for distinguishing DLB from AD. The various diagnostic classifiers generated by this process had high accuracy over the whole dataset (mean accuracy of 94%). The mean accuracy in classifying their out-of-sample case was 80.5%. Every classifier generated consisted of very simple structure, each using 1-2 classification rules and 1-3 data features. As a group, the classifiers were heterogeneous and used several different data features. In particular, some of the classifiers used very simple and inexpensive diagnostic features, yet with high diagnostic accuracy. This work suggests that opportunities may exist for incorporating accessible diagnostic assessments while improving diagnostic rate for DLB. Clinical Relevance- Simple and interpretable high-performing machine learning algorithms identified a variety of readily available clinical assessments for differential diagnosis of dementia offering the opportunities to incorporate various simple and inexpensive screening tests for DLB and addressing the problem of DLB underdiagnosis.

Download full-text PDF

Source
http://dx.doi.org/10.1109/EMBC48229.2022.9871714DOI Listing

Publication Analysis

Top Keywords

machine learning
12
heterogeneous data
12
data features
12
dlb
9
alzheimer's disease
8
distinguishing dlb
8
diagnostic classifiers
8
simple inexpensive
8
diagnostic
7
distinguishing lewy
4

Similar Publications

Who is coming in? Evaluation of physician performance within multi-physician emergency departments.

Am J Emerg Med

January 2025

Department of Emergency Medicine, Yale University School of Medicine, New Haven, CT, USA; Center for Outcomes Research and Evaluation, Yale University, New Haven, CT, USA.

Background: This study aimed to examine how physician performance metrics are affected by the speed of other attendings (co-attendings) concurrently staffing the ED.

Methods: A retrospective study was conducted using patient data from two EDs between January-2018 and February-2020. Machine learning was used to predict patient length of stay (LOS) conditional on being assigned a physician of average speed, using patient- and departmental-level variables.

View Article and Find Full Text PDF

Background: Large language models (LLMs) have been proposed as valuable tools in medical education and practice. The Chinese National Nursing Licensing Examination (CNNLE) presents unique challenges for LLMs due to its requirement for both deep domain-specific nursing knowledge and the ability to make complex clinical decisions, which differentiates it from more general medical examinations. However, their potential application in the CNNLE remains unexplored.

View Article and Find Full Text PDF

Prediction of Thermodynamic Properties of C-Based Fullerenols Using Machine Learning.

J Chem Theory Comput

January 2025

Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, School of Pharmacy, Guizhou Medical University, Guiyang, Guizhou 550025, P. R. China.

Traditional machine learning methods face significant challenges in predicting the properties of highly symmetric molecules. In this study, we developed a machine learning model based on graph neural networks (GNNs) to accurately and swiftly predict the thermodynamic and photochemical properties of fullerenols, such as C(OH) ( = 1 to 30). First, we established a global method for generating fullerenol isomers through isomer fingerprinting, which can generate all possible isomers or produce diverse structural types on demand.

View Article and Find Full Text PDF

This study investigates the geochemical characteristics of rare earth elements (REEs) in highland karstic bauxite deposits located in the Sierra de Bahoruco, Pedernales Province, Dominican Republic. These deposits, formed through intense weathering of volcanic material, represent a potentially valuable REE resource for the nation. Surface and subsurface soil samples were analyzed using portable X-ray fluorescence (pXRF) and a NixPro 2 color sensor validated with inductively coupled plasma optical emission spectrometry (ICP-OES).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!