Bioelectronic medicine is a new approach for developing closed-loop neuromodulation protocols on the peripheral nervous system (PNS) to treat a wide range of disorders currently treated with pharmacological approaches. Algorithms need to have low computational cost in order to acquire, process and model data for the modulation of the PNS in real time. Here, we present a fast learning-based decoding algorithm for the classification of cardiovascular and respiratory functional alterations (i.e., challenges) by using neural signals recorded from intraneural electrodes implanted in the vagus nerve of 5 pigs. Our algorithm relies on 9 handcrafted features, extracted following signal temporal windowing, and a multi-layer perceptron (MLP) for feature classification. We achieved fast and accurate classification of the challenges, with a computational time for feature extraction and prediction lower than 1.5 ms. The MLP achieved a balanced accuracy higher than 80 % for all recordings. Our algorithm could represent a step towards the development of a closed-loop system based on a single intraneural interface with both the potential of real time classification and selective modulation of the PNS.

Download full-text PDF

Source
http://dx.doi.org/10.1109/EMBC48229.2022.9871818DOI Listing

Publication Analysis

Top Keywords

fast accurate
8
learning-based decoding
8
decoding algorithm
8
algorithm classification
8
classification cardiovascular
8
cardiovascular respiratory
8
intraneural electrodes
8
vagus nerve
8
modulation pns
8
real time
8

Similar Publications

Lack of timely prognosis of cardiovascular condition (CVC) is resulting in increased mortality across the globe. Currently, available techniques are confined to medical facilities and need the intervention of specialists. Frequently, this impedes timely treatment, driven by socioeconomic factors.

View Article and Find Full Text PDF

Nocturnal and crepuscular fast-eyed insects often exploit multiple optical channels and temporal summation for fast and low-light imaging. Here, we report high-speed and high-sensitive microlens array camera (HS-MAC), inspired by multiple optical channels and temporal summation for insect vision. HS-MAC features cross-talk-free offset microlens arrays on a single rolling shutter CMOS image sensor and performs high-speed and high-sensitivity imaging by using channel fragmentation, temporal summation, and compressive frame reconstruction.

View Article and Find Full Text PDF

In this study, for the first time, biobased photopolymers were synthesized from phloroglucinol tris epoxy with and without different comonomers, phloroglucinol, 1,4:3,6-dianhydro-D-sorbitol, and 1,4-cyclohexanedimethanol. The rheological, thermal, mechanical, shape-memory, and antimicrobial properties of photopolymers were investigated. The addition of comonomers reduced the photocuring rate (gel time increased from 325 s to 434-861 s) and rigidity (storage modulus decreased from 330.

View Article and Find Full Text PDF

3D printing is an indispensable technology in modern life and is widely used in aerospace, exoskeleton, and architecture. The increasing accuracy requirements of 3D printed objects in these fields require high-precision measurement methods to obtain accurate data. Based on the precision measurement requirements, in this study, a fast multifrequency phase unwrapping method based on 3D printing object appearance acquisition is proposed.

View Article and Find Full Text PDF

Creating fast, non-invasive, precise, and specific diagnostic tests is crucial for enhancing cancer treatment outcomes. Among diagnostic methods, those relying on nucleic acid detection are highly sensitive and specific. Recent developments in diagnostic technologies, particularly those leveraging Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR), are revolutionizing cancer detection, providing accurate and timely results.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!