Neurological trauma, such as stroke, traumatic brain injury (TBI), spinal cord injury, and cerebral palsy can cause mild to severe upper limb impairments. Hand impairment makes it difficult for individuals to complete activities of daily living, especially bimanual tasks. A robotic hand orthosis or hand exoskeleton can be used to restore partial function of an intact but impaired hand. It is common for upper extremity prostheses and orthoses to use electromyography (EMG) sensing as a method for the user to control their device. However some individuals with an intact but impaired hand may struggle to use a myoelectrically controlled device due to potentially confounding muscle activity. This study was conducted to evaluate the application of conventional EMG control techniques as a robotic orthosis/exoskeleton user input method for individuals with mild to severe hand impairments. Nine impaired subjects and ten healthy subjects were asked to perform repeated contractions of muscles in their forearm and then onset analysis and feature classification were used to determine the accuracy of the employed EMG techniques. The average accuracy for contraction identification across employed EMG techniques was 95.4% ± 4.9 for the healthy subjects and 73.9% ± 13.1 for the impaired subjects with a range of 47.0% ± 19.1 - 91.6% ± 8.5. These preliminary results suggest that the conventional EMG control technologies employed in this paper may be difficult for some impaired individuals to use due to their unreliable muscle control.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/EMBC48229.2022.9871351 | DOI Listing |
Front Bioeng Biotechnol
January 2025
Institute of Intelligent Industrial Systems and Technologies for Advanced Manufacturing (STIIMA), Italian Council of National Research (CNR), Milan, Italy.
Introduction: Parkinson's Disease is the second most common neurodegenerative disease in the world. It affects mainly people over 65 and the incidence increases with age. It is characterized by motor and non-motor symptoms and several clinical manifestations.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Biomedical Engineering, University of Houston, 3517 Cullen Blvd, SERC Room 2011, Houston, TX, 77204-5060, USA.
Electro-tactile stimulation (ETS) can be a promising aid in augmenting sensation for those with sensory deficits. Although applications of ETS have been explored, the impact of ETS on the underlying strategies of neuromuscular coordination remains largely unexplored. We investigated how ETS, alone or in the presence of mechano-tactile environment change, modulated the electromyogram (EMG) of individual muscles during force control and how the stimulation modulated the attributes of intermuscular coordination, assessed by muscle synergy analysis, in human upper extremities.
View Article and Find Full Text PDFBiomed Phys Eng Express
January 2025
F. Joseph Halcomb III, MD, Department of Biomedical Engineering, University of Kentucky, 143 Graham Ave., Lexington, Kentucky, 40506, UNITED STATES.
Brain-computer interfaces (BCIs) offer disabled individuals the means to interact with devices by decoding the electroencephalogram (EEG). However, decoding intent in fine motor tasks can be challenging, especially in stroke survivors with cortical lesions. Here, we attempt to decode graded finger extension from the EEG in stroke patients with left-hand paresis and healthy controls.
View Article and Find Full Text PDFCureus
December 2024
School of Allied Health Sciences, Manav Rachna International Institute of Research and Studies, Faridabad, IND.
Introduction: Sleep deprivation (SD), stemming from a myriad of aetiologies, is a prevalent health condition frequently overlooked. It typically impairs memory consolidation and synaptic plasticity, potentially through neuroinflammatory mechanisms and adenosinergic signalling. It is still unclear whether the adenosine A1 receptor (A1R) modulates SD-induced neurological deficits in the hippocampus.
View Article and Find Full Text PDFJ Neurophysiol
January 2025
Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK.
Many individuals with incomplete spinal cord injury (SCI) exhibit reduced volitional control of trunk muscles, such as impaired voluntary contractions of the erector spinae (ES), due to damage to the neural pathways regulating sensorimotor function. Studies using conventional bipolar electromyography (EMG) showed alterations in the overall, or global, activation of the trunk muscles in people with SCI. However, how activation varied across specific regions within the ES, referred to as regional activation, remains unknown.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!