With the enormous amount of data collected by unobtrusive sensors, the potential of utilizing these data and applying various multi-modal advanced analytics on them is numerous and promising. However, taking advantage of the ever-growing data requires high-performance data-handling systems to enable high data scalability and easy data accessibility. This paper demonstrates robust design, developments, and techniques of a hierarchical time-indexed database for decision support systems leveraging irregular and sporadic time series data from sensor systems, e.g., wearables or environmental. We propose a technique that leverages the flexibility of general purpose, high-scalability database systems, while integrating data analytics focused column stores that leverage hierarchical time indexing, compression, and dense raw numeric data storage. We have evaluated the performance characteristics and tradeoffs of each to understand the data access latencies and storage requirements, which are key elements for capacity planning for scalable systems.

Download full-text PDF

Source
http://dx.doi.org/10.1109/EMBC48229.2022.9871855DOI Listing

Publication Analysis

Top Keywords

data
10
hierarchical time-indexed
8
time-indexed database
8
systems
5
htidb hierarchical
4
database efficient
4
efficient storage
4
storage access
4
access irregular
4
irregular time-series
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!