Isolated effective coherence (iCoh) is a measure of neural causal functional connectivity from EEG signals that was proven to overperform the Generalized Partial Directed Coherence (gPDC). However, iCoh sensitivity in the identification of reliable functional neural connections with respect to random links was not investigated. This study aims to compare the sensitivity of iCoh and gPDC with a statistical surrogates' approach. The cerebral motor network topology of a cohort of subjects in sub-acute stage after stroke was investigated. iCoh showed enhanced statistical discriminative power of the relevant connections within the motor network with respect to gPDC. This property influenced the assessment of ipsilesional intra-hemispheric topographic variations occurring in the population after a physical rehabilitation program.

Download full-text PDF

Source
http://dx.doi.org/10.1109/EMBC48229.2022.9870885DOI Listing

Publication Analysis

Top Keywords

motor network
12
comparison directed
4
directed causal
4
causal flow
4
flow metrics
4
metrics assessment
4
assessment resting-state
4
resting-state eeg
4
eeg motor
4
network connectivity
4

Similar Publications

Biological vision systems simultaneously learn to efficiently encode their visual inputs and to control the movements of their eyes based on the visual input they sample. This autonomous joint learning of visual representations and actions has previously been modeled in the Active Efficient Coding (AEC) framework and implemented using traditional frame-based cameras. However, modern event-based cameras are inspired by the retina and offer advantages in terms of acquisition rate, dynamic range, and power consumption.

View Article and Find Full Text PDF

Adolescents who have sustained a concussion or mild traumatic brain injury (mTBI) are prone to repeat injuries which may be related to subtle motor deficits persisting after clinical recovery. Cross-sectional research has found that these deficits are associated with altered functional connectivity among somatomotor, dorsal attention, and default mode networks. However, our understanding of how these brain-behavior relationships change over time after clinical recovery is limited.

View Article and Find Full Text PDF

The subthalamic nucleus is thought to play a crucial role in controlling impulsive actions. Networked among the basal ganglia and receiving input from several cortical areas, the subthalamic nucleus is well positioned to influence action selection when faced with competing and conflicting action outcomes. The purpose of this study was to test the dissociable roles of the dorsal and ventral aspects of the subthalamic nucleus during action conflict in patients with Parkinson's disease undergoing intraoperative neurophysiological recording and to explore a potential mechanism for this inhibitory control.

View Article and Find Full Text PDF

Introduction: Motor learning, in addition to influencing the practice of physical activity, affects cognitive skills related to prediction and decision. One key principle in sports training is designing exercise programs that optimize cognitive-motor performance, based on the Challenge Point Framework (CPF). The aim of this study is to investigate the effect of different levels of work difficulty on cognitive-perceptual indicators in table tennis beginners.

View Article and Find Full Text PDF

Background And Purpose: Asymptomatic carotid stenosis (ACS) is an independent risk factor for ischemic stroke and vascular cognitive impairment, affecting cognitive function across multiple domains. This study aimed to explore differences in static and dynamic intrinsic functional connectivity and temporal dynamics between patients with ACS and those without carotid stenosis.

Methods: We recruited 30 patients with unilateral moderate-to-severe (stenosis ≥ 50%) ACS and 30 demographically-matched healthy controls.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!