Minimally invasive instruments are inserted per-cutaneously and are steered toward the desired anatomy. The low stiffness of instruments is an advantage; however, once the target is reached, the instrument usually is required to transmit force to the environment. The main limitation of the constant stiffness is predetermined maneuverability and cap of force transmission. Whereas, a highly flexible device can be safely steered through the body but is not suitable for payload limit, while a highly stiff device can have relatively high loads but cannot be steered in highly tortuous trajectories. To overcome this limitation, an adaptive stiffness soft robot was proposed, and the effects of the chamber pressure on the stiffness of the soft robot were investigated. To this end, a single-chamber pneumatic soft robot with one tendon was designed and fabricated. Afterward, a continuum mechanics model based on the nonlinear Cosserat rod model with hyperelastic material model and large deformation kinematics of the robot was developed. The shooting method solved the model as a boundary value problem with Dirichlet and Neumann boundary conditions. The results of the model showed stiffness adaptation feasibility with simultaneous tendon-driving and pneumatic actuation. Thus, to validate the theoretical findings, a series of experimental studies were performed with pressure in the range of 33 to 44 kPa and tendon tensions in the range of 0 to 2.7 N. The theoretical and experimental results for tip displacement and stiffness showed similar trends with a maximum error of 8.25%.

Download full-text PDF

Source
http://dx.doi.org/10.1109/EMBC48229.2022.9871310DOI Listing

Publication Analysis

Top Keywords

soft robot
12
stiffness adaptation
8
stiffness soft
8
stiffness
7
robot
5
model
5
adaptation hybrid
4
soft
4
hybrid soft
4
soft surgical
4

Similar Publications

The high degree of freedom (DoF) shape morphing widely exists in biology for mimicry, camouflage, and locomotion. Currently, a lot of bionic soft/flexible actuators and robots with shape-morphing functions have been developed to realize conformity, grasp, and movement. Among these solutions, two-dimensional responsive materials and structures that can shape morph into different three-dimensional configurations are valuable for creating reversible high DoF shape morphing.

View Article and Find Full Text PDF

Leech-Inspired Amphibious Soft Robot Driven by High-Voltage Triboelectricity.

Adv Mater

January 2025

School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, 200444, P. R. China.

Leech locomotion, characterized by alternating sucker attachment and body contraction provides high adaptability and stability on complex terrains. Herein, a leech-inspired triboelectric soft robot is proposed for the first time, capable of amphibious movement, climbing, and load-carrying crawling. A high-performance triboelectric bionic robot system is developed to drive and control electro-responsive soft robots.

View Article and Find Full Text PDF

In this study, a fuzzy adaptive impedance control method integrating the backstepping control for the PAM elbow exoskeleton was developed to facilitate robot-assisted rehabilitation tasks. The proposed method uses fuzzy logic to adjust impedance parameters, thereby optimizing user adaptability and reducing interactive torque, which are major limitations of traditional impedance control methods. Furthermore, a repetitive learning algorithm and an adaptive control strategy were incorporated to improve the performance of position accuracy, addressing the time-varying uncertainties and nonlinear disturbances inherent in the exoskeleton.

View Article and Find Full Text PDF

Data-driven calibration methods have shown promising results for accurate proprioception in soft robotics. This process can be greatly benefited by adopting numerical simulation for computational efficiency. However, the gap between the simulated and real domains limits the accurate, generalized application of the approach.

View Article and Find Full Text PDF
Article Synopsis
  • Soft robotics is being explored for rehabilitation, offering potential benefits for individuals recovering upper limb motor function after injuries, with an emphasis on increased safety and comfort compared to traditional rigid robotics.
  • The article reviews clinical evidence from 37 studies on 13 different soft upper limb devices used in both clinical and home environments, assessing their effectiveness and user experience.
  • It aims to guide future developments in soft robotic rehabilitation by providing recommendations for design and application, highlighting the importance of understanding user needs and clinical outcomes.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!