Cardiovascular diseases (CVDs) are among the most serious disorders leading to high mortality rates worldwide. CVDs can be diagnosed and prevented early by identifying risk biomarkers using statistical and machine learning (ML) models, In this work, we utilize clinical CVD risk factors and biochemical data using machine learning models such as Logistic Regression (LR), Support Vector Machine (SVM), Random Forest (RF), Naïve Bayes (NB), Extreme Grading Boosting (XGB) and Adaptive Boosting (AdaBoost) to predict death caused by CVD within ten years of follow-up. We used the cohort of the Ludwigshafen Risk and Cardiovascular Health (LURIC) study and 2943 patients were included in the analysis (484 annotated as dead due to CVD). We calculated the Accuracy (ACC), Precision, Recall, F1-Score, Specificity (SPE) and area under the receiver operating characteristic curve (AUC) of each model. The findings of the comparative analysis show that Logistic Regression has been proven to be the most reliable algorithm having accuracy 72.20 %. These results will be used in the TIMELY study to estimate the risk score and mortality of CVD in patients with 10-year risk.

Download full-text PDF

Source
http://dx.doi.org/10.1109/EMBC48229.2022.9871121DOI Listing

Publication Analysis

Top Keywords

machine learning
12
learning models
12
logistic regression
8
risk
5
machine
4
models cardiovascular
4
cardiovascular disease
4
disease events
4
events prediction
4
prediction cardiovascular
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!