A new patient-friendly and discrete approach to build a unidirectional communication path with active implants based on deliberately produced human body signals is presented. The application for which this approach is intended is an artificial urinary sphincter implant, the closure mechanism of which is wirelessly actuated in the event of micturition need. Conventional implant communication methods can be associated with limitations regarding technological implementation and usability, and are used by medical professionals only. In order to enable patients to discretely and directly communicate with their implant without the need for an external handheld device, the feasibility of a communication approach based on manually applied 'knocking' signals on abdominal tissue is examined in the presented work. A gelatin-based phantom model is used to mimic vibro-acoustic properties of human soft tissue in vitro. A piezoelectric element and an electret microphone are applied as sensors for signal detection at the implantation site and are investigated with respect to their suitability for the intended application. Clinical Relevance- The presented implant communication method can contribute to urinary incontinence therapy by enabling patients to discretely and user-friendly actuate their artificial sphincter implant and can provide a basis for future research into new implant communication technologies.

Download full-text PDF

Source
http://dx.doi.org/10.1109/EMBC48229.2022.9871711DOI Listing

Publication Analysis

Top Keywords

implant communication
12
unidirectional communication
8
based deliberately
8
deliberately produced
8
produced human
8
human body
8
body signals
8
sphincter implant
8
patients discretely
8
implant
7

Similar Publications

In biomedical research, telemetry is used to take automated physiological measurements wirelessly from animals, as it reduces their stress and allows recordings for large data collection over long periods. The ability to transmit high-throughput data from an in-body device (e.g.

View Article and Find Full Text PDF

Implantable Passive Sensors for Biomedical Applications.

Sensors (Basel)

December 2024

School of Electrical and Computer Engineering, National Technical University of Athens, 15772 Athens, Greece.

Article Synopsis
  • Implantable sensors are becoming popular for localized and continuous monitoring in medical settings, allowing for early detection and timely interventions.
  • There are two main types of implantable sensors: active, which have more advanced functionalities but require a power source, and passive, which don't need power and offer simpler, smaller designs.
  • This review focuses on passive sensor technologies, discussing their materials, detection methods, clinical applications, advantages over active sensors, and important considerations for their packaging and compatibility with the human body.
View Article and Find Full Text PDF

Biogenesis of Extracellular Vesicles (EVs) and the Potential Use of Embryo-Derived EVs in Medically Assisted Reproduction.

Int J Mol Sci

December 2024

Department of Reproductive Medicine and Gynecological Endocrinology, University Medical Centre Maribor, 2000 Maribor, Slovenia.

Extracellular vesicles (EVs) are lipid bilayer-bound particles released from cells that cannot replicate on their own, play a crucial role in intercellular communication, and are implicated in various physiological and pathological processes. Within the domain of embryo culture media research, extensive studies have been conducted to evaluate embryo viability by analyzing spent culture medium. Advanced methodologies such as metabolomic profiling, proteomic and genomic analyses, transcriptomic profiling, non-coding RNA assessments, and oxidative status measurements have been employed to further understand the molecular characteristics of embryos and improve selection criteria for successful implantation.

View Article and Find Full Text PDF

Objective: The RSVP Keyboard is a non-implantable, event-related potential-based brain-computer interface (BCI) system designed to support communication access for people with severe speech and physical impairments. Here we introduce Inquiry Preview, a new RSVP Keyboard interface incorporating switch input for users with some voluntary motor function, and describe its effects on typing performance and other outcomes.

Approach: Four individuals with disabilities participated in the collaborative design of possible switch input applications for the RSVP Keyboard, leading to the development of Inquiry Preview and a method of fusing switch input with language model and electroencephalography (EEG) evidence for typing.

View Article and Find Full Text PDF

Gestures are essential in early language development. We investigate the use of gestures in children with cochlear implants (CIs), with a particular focus on deictic, iconic, and conventional gestures. The aim is to understand how the use of gestures in everyday interactions relates to age, vocabulary testing results, and language development reported by parents.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!