In theoretical ecology, recent field experiments on terrestrial vertebrates observe that the predator-prey interaction can not only be curtailed by direct consumption but also governed by some indirect effects such as the fear of predator which may reduce the reproduction rate of prey individuals. Based on this fact, we have developed and explored the predator-prey interaction with the influence of both cost and benefit of fear effect (felt by prey). A Holling type III functional response with the effect of habitat complexity has been taken to consume the prey biomass. Positivity and boundedness of the studied system prove that the model is well-behaved. The uniform persistence of the studied system is derived analytically under some parametric restrictions. The feasibility conditions and stability criteria of each equilibrium points have been discussed. Next, we have exhibited the existence of Hopf-bifurcation around the interior equilibrium point. Our mathematical analyses show that habitat complexity and fear effect both have a great impact on the persistence of the predator biomass. Furthermore, we have investigated the effect of breeding delay parameter such that the system loses its stability behaviour and enters into a limit cycle oscillations through Hopf-bifurcation. Numerical simulations are illustrated to verify our analytical outcomes. Numerically, we have perturbed the death rates of prey and predator species with Gaussian white noise terms due to the effects of environmental fluctuations.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11538-022-01067-7DOI Listing

Publication Analysis

Top Keywords

habitat complexity
12
predator-prey interaction
8
studied system
8
comparison study
4
study predator-prey
4
predator-prey model
4
model deterministic
4
deterministic stochastic
4
stochastic environments
4
environments impacts
4

Similar Publications

Background: Mounting evidence underline the relevance of macromolecular complexes in cancer. Integrins frequently recruit ion channels and transporters within complexes which behave as signaling hubs. A complex composed by β1 integrin, hERG1 K channel, the neonatal form of the Na channel Na 1.

View Article and Find Full Text PDF

Rescue RM/CS-AKI by blocking strategy with one-dose anti-myoglobin RabMAb.

Nat Commun

January 2025

School of Disaster and Emergency Medicine, Faculty of Medicine, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China.

Rhabdomyolysis or Crush syndrome-related AKI (RM/CS-AKI) has high mortality, and there is no effective early on-site treatment method. The critical pathogenic factor of RM/CS-AKI is the excessive free myoglobin (Mb) in blood circulation. Here, based on the concept of creating a "mobile barrier", we develop an anti-Mb rabbit monoclonal antibody (RabMAb) with high specificity, affinity, stability, and broad species reactivity.

View Article and Find Full Text PDF

The interaction between dissolved organic matter (DOM) and ferrihydrite (Fh) is a crucial process to control the environmental behavior of heavy metals (HMs) in soil environments, with DOM playing a particularly strong role in HMs fate. Since chemical properties of DOM vary based on different soil parent materials, the underlying impact of DOM-Fh associations on HMs binding remains unclear. This study systematically investigated the interactions between DOM from three soil parent materials (fluvial alluvium: FDOM, sand-shale: SDOM and granite: GDOM) and Fh, and meanwhile understand their effects on the environmental behavior of Cd and Pb under various environmental conditions.

View Article and Find Full Text PDF

Background: The pathogenesis of ovarian cancer (OvCa) involves a complex interplay of genetic, environmental, and hormonal factors. With the in-depth exploration of tumor ecosystem, exosomes can mediate the immunological status of tumor microenvironment (TME). Therefore, we aimed to recognize the tumor-derived exosomes (TEXs) which can distinguish the immune-hot and cold tumors and reflect the immunotherapeutic responses.

View Article and Find Full Text PDF

Hydrocarbon biodegradation processes at a historic oil production site - A signature metabolite study.

Sci Total Environ

January 2025

Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany. Electronic address:

Decades of research demonstrated that microbes can remediate petroleum-contaminated environments through biodegradation of hydrocarbons. Recent studies have applied signature metabolite analysis to investigate hydrocarbon-contaminated sites, focusing primarily on aquifer systems and metabolites of relatively water-soluble monoaromatic hydrocarbons. However, the number of studies involving non-targeted analysis and identification of individual metabolites in environmental samples is limited.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!