Mycobacterium tuberculosis (Mtb) survives and replicates within host macrophages (MΦ) and subverts multiple antimicrobial defense mechanisms. Previously, we reported that lipids shed by pathogenic mycobacteria inhibit NPC1, the lysosomal membrane protein deficient in the lysosomal storage disorder Niemann-Pick disease type C (NPC). Inhibition of NPC1 leads to a drop in lysosomal calcium levels, blocking phagosome-lysosome fusion leading to mycobacterial survival. We speculated that the production of specific cell wall lipid(s) that inhibit NPC1 could have been a critical step in the evolution of pathogenicity. We therefore investigated whether lipid extracts from clinical Mtb strains from multiple Mtb lineages, Mtb complex (MTBC) members and non-tubercular mycobacteria (NTM) inhibit the NPC pathway. We report that inhibition of the NPC pathway was present in all clinical isolates from Mtb lineages 1, 2, 3 and 4, Mycobacterium bovis and the NTM, Mycobacterium abscessus and Mycobacterium avium. However, lipid extract from Mycobacterium canettii, which is considered to resemble the common ancestor of the MTBC did not inhibit the NPC1 pathway. We conclude that the evolution of NPC1 inhibitory mycobacterial cell wall lipids evolved early and post divergence from Mycobacterium canettii-related mycobacteria and that this activity contributes significantly to the promotion of disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9463166PMC
http://dx.doi.org/10.1038/s41467-022-32553-0DOI Listing

Publication Analysis

Top Keywords

inhibit npc1
12
pathogenic mycobacteria
8
cell wall
8
wall lipids
8
mtb lineages
8
npc pathway
8
mycobacterium
6
mtb
5
npc1
5
inhibition niemann-pick
4

Similar Publications

Abnormal autophagy regulation is implicated in lupus and other autoimmune diseases. We investigated autophagy in the murine pristane-induced lupus model. Pristane causes monocyte/macrophage-mediated endoplasmic reticulum (ER) stress in lung endothelial cells and diffuse alveolar hemorrhage (DAH) indistinguishable from DAH in lupus patients.

View Article and Find Full Text PDF

Background: The Niemann Pick C1 (NPC1) protein is an intracellular cholesterol transporter located in the late endosome/lysosome (LE/Ly) that is involved in the mobilization of endocytosed cholesterol. Loss-of-function mutations in the NPC1 gene lead to the accumulation of cholesterol and sphingolipids in LE/Ly, resulting in severe fatal NPC1 disease. Cellular alterations associated with NPC1 inactivation affect both the integrity of lipid rafts and the endocytic pathway.

View Article and Find Full Text PDF

Niemann Pick Disease Type C (NP-C), a rare neurogenetic disease with no known cure, is caused by mutations in the cholesterol trafficking protein NPC1. Brain microvascular endothelial cells (BMEC) are thought to play a critical role in the pathogenesis of several neurodegenerative diseases; however, little is known about how these cells are altered in NP-C. In this study, we investigated how NPC1 inhibition perturbs BMEC metabolism in human induced pluripotent stem cell-derived BMEC (hiBMEC).

View Article and Find Full Text PDF

Lysosomal damage due to cholesterol accumulation triggers immunogenic cell death.

Autophagy

December 2024

Centre de Recherche des Cordeliers, INSERM UMRS 1138, Sorbonne Université, Université Paris Cité, Équipe labellisée par la Ligue contre le Cancer, Institut Universitaire de France, Paris, France.

Cholesterol serves as a vital lipid that regulates numerous physiological processes. Nonetheless, its role in regulating cell death processes remains incompletely understood. In this study, we investigated the role of cholesterol trafficking in immunogenic cell death.

View Article and Find Full Text PDF
Article Synopsis
  • Niemann-Pick Type C1 (NPC1) is linked to liver diseases and liver cancer, with high NPC1 levels in tumor tissues correlating to poor patient prognosis.
  • In laboratory studies, reducing NPC1 expression decreased the growth, invasion, and spread of liver cancer cells, while also triggering cell death and lowering activation of a key signaling pathway (Wnt/β-catenin).
  • Animal studies confirmed that blocking NPC1 effectively slowed liver cancer growth, suggesting NPC1 inhibition could be a promising treatment approach for this type of cancer.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!