Sustainable management of groundwater resources in geological transition zones (GTZ) is essential due to their complex geology, increasing population, industrialization, and climate change. Groundwater quality monitoring and assessment represent a viable panacea to this problem. Therefore, there is a great need to investigate groundwater resources in terms of their chemistry and pollution to ascertain their quality and implement robust pollution abatement strategies. This study focused on the characterization of groundwater in a typical geological transition zone in northeastern Nigeria. Eighty-seven (87) groundwater samples were collected from dug wells and boreholes during the 2017 dry season. pH, conductivity, and total dissolved solids (TDS) were measured in situ using a multiparameter probe, while major cations and anions were measured using atomic absorption spectrometry and ion chromatography, respectively. Data were analyzed using descriptive statistics, principal component analysis (PCA), water quality index, and standard hydrochemical plots. TDS ranged between 95 and 1154 mg L in basement terrains and between 49 and 1105 in sedimentary areas. pH ranged between 6.8 and 7.7 mg L in basement terrains and between 5.0 and 6.5 in sedimentary areas, suggesting a moderately acidic to alkaline low mineralized groundwater. Calcium (2.6-128.0 mg L) was the dominant cation in the basement areas, suggesting silicate weathering/dissolution, while sodium (1.9-106.0 mg L) dominated the sedimentary zones due to base exchange reactions. The PCA analysis suggests that mineral dissolution (mostly silicate weathering) controls the hydrochemistry of the basement aquifers, while ion exchange and albite weathering, with some influence of anthropogenic factor, control the sedimentary aquifers. The water quality index revealed that the basement setting was predominated by poor to unsuitable groundwater, while the sedimentary terrain was characterized by potable groundwater. The dominant hydrochemical facie in the basement areas was Ca-(Mg)-HCO characteristic of recharge meteoric water. The Na- (K)-HCO facie characterized the sedimentary zones, indicative of cation exchange reactions, while the mixed water facie typifies the geological contact zones. The shallow nature of the basement groundwaters makes them more susceptible to geogenic and anthropogenic pollution compared to the sandstone aquifers. However, the basement aquifers have better irrigation indices (Kelly ratio and soluble sodium percent) as compared to the sandstone aquifers, which exhibit poor Kelly ratios (< 1) and soluble sodium percent (> 50) ratings. Results from the study clearly highlight the poor-unsuitable groundwater quality in parts of the studied GTZ and can be very instrumental to the policymakers in implementing sustainable water treatment strategies and cleaner production technologies in GTZ to forestall the incidence of water-related diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-022-22762-x | DOI Listing |
Sci Rep
January 2025
School of Safety Engineering and Emergency Management, Shijiazhuang Tiedao University, Shijiazhuang, 050043, China.
In the eastern segment of the Central Asian Orogenic Belt (CAOB), there is widespread volcanic magma activity. However, there is still considerable controversy over the formation mechanisms and material sources of these volcanoes. The mantle transition zone (MTZ), as a necessary channel for the upward and downward movement of mantle material and energy exchange may provide crucial constraints on the dynamic mechanisms of volcanic activity.
View Article and Find Full Text PDFEnviron Microbiol
January 2025
Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences, Ocean University of China, Qingdao, China.
Deep-sea sediments contain a large number of Thaumarchaeota that are phylogenetically distinct from their pelagic counterparts. However, their ecology and evolutionary adaptations are not well understood. Metagenomic analyses were conducted on samples from various depths of a 750-cm sediment core collected from the Mariana Trench Challenger Deep.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
College of Hydraulic and Environmental Engineering, Three Gorges University, Yichang 443000, China.
Concrete structures in cold regions are affected by freeze-thaw cycles (FTCs) and carbonation, which lead to the premature failure of concrete structures. The carbonation depth, relative dynamic elastic modulus (RDEM), compressive strength, porosity, and pore size distribution of concrete under FTC conditions were tested through an accelerated carbonation experiment to study the carbonation performance evolution. The freeze-thaw effect mechanism on concrete carbonation was further analyzed via the obtained relationship between carbonation depth and pore structure.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
School of GeoSciences, University of Edinburgh, Edinburgh EH9 3FE, United Kingdom.
The Red Planet is a magnetic planet. The Martian crust contains strong magnetization from a core dynamo that likely was active during the Noachian period when the surface may have been habitable. The evolution of the dynamo may have played a central role in the evolution of the early atmosphere and the planet's transition to the current cold and dry state.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Department of Civil, Geological, and Environmental Engineering, College of Engineering, University of Saskatchewan, 57 Campus Drive, Engineering Building, Saskatoon, SK, S7N 5A9, Canada.
Extending unfrozen water availability is critical for stress-tolerant bioremediation of contaminated soils in cold climates. This study employs the soil-freezing characteristic curves (SFCCs) of biostimulated, hydrocarbon-contaminated cold-climate soils to efficiently address the coupled effects of unfrozen water retention and freezing soil temperature on sub-zero soil respiration activity. Freezing-induced soil respiration experiments were conducted under the site-relevant freezing regime, programmed from 4 to - 10 °C at a seasonal soil-freezing rate of - 1 °C/day.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!